
PGX AND TDM IN PSYCHOPHARMACOLOGY

GWEN MCMILLIN, PHD, DABCC(CC,TC)

UNIVERSITY OF UTAH, DEPT OF PATHOLOGY

ARUP LABORATORIES

OUTLINE

NUTS AND BOLTS OF PHARMACOGENOMICS (PGX) TESTING

- EXAMPLES RELEVANT TO BEHAVIORAL HEALTH CARE
 - SINGLE GENE-DRUG ASSOCIATIONS
 - MULTIPLE GENE-DRUG ASSOCIATIONS
 - TDM

- IMPLEMENTATION
 - VARIABLES TO CONSIDER WHEN SELECTING A TEST
 - FACTORS FOR SUCCESS

Pharmacokinetics

PGx

The right concentration, at the right time

TDM

Physiology to support mechanism(s) of action

Pharmacodynamics

Adherence
Co-medications
Nutritional status
Demographics
Clinical status
Genetics
Psychology

CLINICAL MONITORING

Drug Response

PGX

POSSIBLE INDICATIONS FOR PGX

- MANDATED FOR SAFETY
- CLINICALLY ACTIONABLE PGX ASSOCIATIONS FOR MEDICATIONS UNDER CONSIDERATION
- PATIENT HAS FAILED MULTIPLE MEDICATIONS
- PERSONAL OR FAMILY HISTORY OF AT LEAST ONE SERIOUS ADVERSE DRUG REACTIONS
- RELEVANT TESTING IS AVAILABLE WITH REASONABLE LOGISTICS

Home U-PGx PREPARE Education News Login Members Contact

EXAMPLES OF US FACILITIES THAT ARE EARLY ADOPTERS

PG4KDs at St. Jude Children's Research Hospital

University of Florida Health Personalized Medicine Program

My Drug Genome program at Vanderbilt University my DRUG GENOME

Center for Personalized Therapeutics at University of Chicago

Center for Pharmacogenomics at the Ohio State University

· Mayo Clinic Center for Individualized Medicine

FDA DRUG LABELS THAT CONTAIN PGX

(N=404 ENTRIES AS OF

APRIL, 2020)

18 therapeutic areas, of which top 10 are:

- Oncology (n=164)
- Psychiatry (n=37)
- Infectious Disease (n=35)
- Neurology (n=28)
- Hematology (n=26)
- Anesthesiology (n=24)
- Cardiology (n=18)
- Gastroenterology (n=16)
- Rheumatology (n=10)
- Pulmonology (n=9)

88 genetic biomarkers, of which top 10 are:

- CYP2D6 (n=68)
- G6PD (n=39)
- CYP2C19 (n=22)
- ESR, PGR (n=21)
- ERBB2 (n=17)
- CYP2C9 (n=14)
- IFNL3 (n=12)
- BCR-ABL1 (n=10)
- EGFR (n=10)
- UGT1A1 (n=9)
- ALK (n=9)

https://www.fda.gov/drugs/science-research-drugs/table-pharmacogenomic-biomarkers-drug-labeling

NEW FDA RESOURCE TABLE, 2020

- GERMLINE ASSOCIATIONS ONLY, WITH A CLINICAL FOCUS
- CATEGORIZES ASSOCIATIONS IN 3 LISTS, BASED ON EVIDENCE :
 - SUPPORT THERAPEUTIC MANAGEMENT RECOMMENDATIONS: 51 DRUGS, 13 GENES
 - POTENTIAL IMPACT ON SAFETY OR RESPONSE: 19 DRUGS, 7 GENES
 - POTENTIAL IMPACT ON PHARMACOKINETIC PROPERTIES ONLY: 37 DRUGS, 5 GENES
- BASED ON FDA CLEARED LABELING AND AN INTERNAL (FDA) WORKGROUP REVIEW
- INTENDED TO BE DYNAMIC AND OPEN TO PUBLIC COMMENT

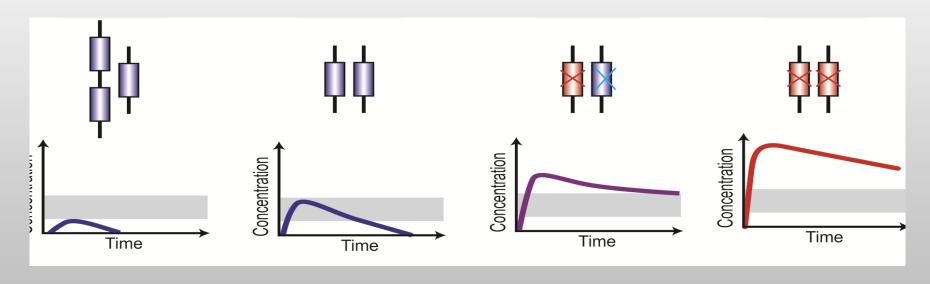
https://www.fda.gov/medical-devices/precision-medicine/table-pharmacogenetic-associations

FDA RESOURCE TABLE EXAMPLES

- FIRST TIER:
 - CYP2D6 AND AMPHETAMINE,
 ARIPIPRAZOLE, ATOMOXETINE,
 BREXPIPRAZOLE, CITALOPRAM,
 CLOBAZAM, CLOZAPINE, ILOPERIDONE,
 THIORIDAZINE AND VENLAFAXINE
 - CYP2C9 AND DRONABINOL
 - HLA-B*15:02 AND CARBAMAZEPINE

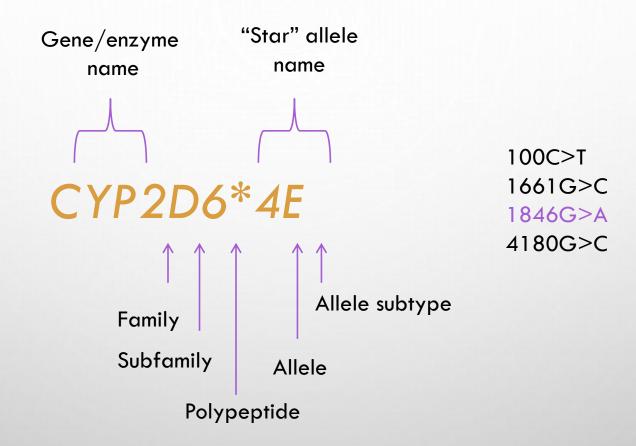
- SECOND TIER:
 - CYP2D6 AND PERPHENAZINE
 - HLA-A*31:01 AND CARBAMAZEPINE
- THIRD TIER :
 - CYP2D6 AND AMITRIPTYLINE,
 AMOXAPINE, CLOMIPRAMINE,
 DESIPRAMINE, DIAZEPAM, DOXEPIN,
 FLUVOXAMINE, IMIPRAMINE,
 NORTRIPTYLINE, PAROXETINE,
 PROTRIPTYLINE, RISPERIDONE,
 TRIMIPRAMINE
 - CYP2C19 AND ESCITALOPRAM

Drug	Gene	Affected Subgroups+	Description of Gene-Drug Interaction
Abacavir	HLA-B	*57:01 allele positive	Results in higher adverse reaction risk (hypersensitivity reactions). Do not use abacavir in patients positive for HLA-B*57:01.
Amifampridine	NAT2	poor metabolizers	Results in higher systemic concentrations and higher adverse reaction risk. Use lowest recommended starting dosage and monitor for adverse reactions. Refer to FDA labeling for specific dosing recommendations.
Amifampridine Phosphate	NAT2	poor metabolizers	Results in higher systemic concentrations. Use lowest recommended starting dosage (15 mg/day) and monitor for adverse reactions.
Amphetamine	CYP2D6	poor metabolizers	May affect systemic concentrations and adverse reaction risk. Consider lower starting dosage or use alternative agent.
Aripiprazole	CYP2D6	poor metabolizers	Results in higher systemic concentrations and higher adverse reaction risk. Dosage adjustment is recommended. Refer to FDA labeling for specific dosing recommendations.
Aripiprazole Lauroxil	CYP2D6	poor metabolizers	Results in higher systemic concentrations. Dosage adjustment is recommended. Refer to FDA labeling for specific dosing recommendations.
Atomoxetine	CYP2D6	poor metabolizers	Results in higher systemic concentrations and higher adverse reaction risk. Adjust titration interval and increase dosage if tolerated. Refer to FDA labeling for specific dosing recommendations.
Azathioprine	TPMT and/or NUDT15	intermediate or poor metabolizers	Alters systemic active metabolite concentration and dosage requirements. Results in higher adverse reaction risk (myelosuppression). Consider alternative therapy in poor metabolizers. Dosage reduction is recommended in intermediate metabolizers for NUDT15 or TPMT. Intermediate metabolizers for both genes may require more substantial dosage reductions. Refer to FDA labeling for

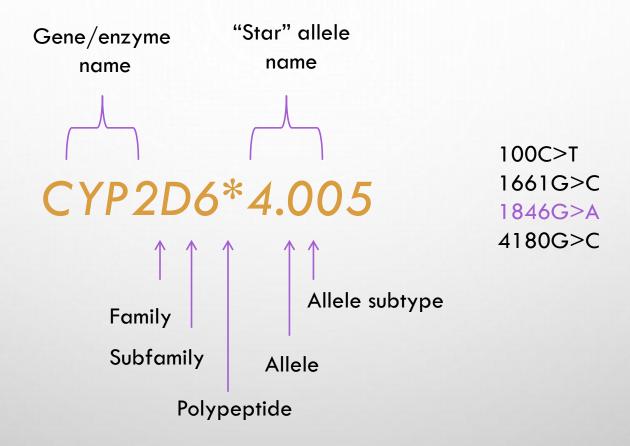

Ultra-rapid metabolizer: multiple copies of normal alleles

Normal/
Extensive
metabolizer:
2 normal alleles

metabolizer:
Mix of normal,
decreased and/or
no function alleles


Intermediate

Poor metabolizer: 2 no function alleles



Effect on drug response is drug-dependent...

CYTOCHROME P450 (CYP) NOMENCLATURE

CYTOCHROME P450 (CYP) NOMENCLATURE

^{*1} suggests that no variants were detected

ASSIGNMENT OF FUNCTIONAL STATUS

HOME ABOUT

GENES

SUBMISSIONS

MEMBERS

RESOURCES

CONTACT

PV ID Looki

						_
♣ CYP2D6*4		PV00429	1847G>A (splicing defect/169frameshift)		no function	
<u>₹ CYP2D6*4.001</u>	CYP2D6*4A	PV00235	-1426C>T, -1235A>G, -1000G>A, 100C>T (P34S), 310G>T, 745C>G, 842T>G, 973C>A (L91M), 983A>G (H94R), 996C>G, 1662G>C, 1847G>A (splicing defect/169frameshift), 2098A>G, 3385A>C, 3583A>G, 4181G>C (S486T), 4402C>T	Def	deposited by Gaedigk et al. and by Nofziger Gough et al. 1990 Hanioka et al. 1990 Kagimoto el al 1990	
<u>₹</u> CYP2D6*4.002	CYP2D6*4B	PV00237	100C>T (P34S), 973C>A (L91M), 983A>G (H94R), 996C>G, 11847G>A (splicing defect/169frameshift), 4181G>C (S486T)	Lim	Kagimoto el al 1990	
<u>♣ CYP2D6*4.003</u>	CYP2D6*4C	PV00236	100C>T (P34S), 1662G>C, 11847G>A (splicing defect/169frameshift), 3888T>C, 4181G>C (S486T)	Lim	Yokota et al. 1993	
<u>₹</u> CYP2D6*4.004	CYP2D6*4D	PV00847	-1426C>T, -1000G>A, 100C>T (P34S), 310G>T, 842T>G, 1038C>T, 1662G>C, 11847G>A (splicing defect/169frameshift), 2098A>G, 3385A>C, 3583A>G, 4181G>C (S486T), 4402C>T	Def	Liau et al. deposited by Gaedigk et al.	
<u>♣</u> CYP2D6*4.005	CYP2D6*4E	PV00254	100C>T (P34S), 1662G>C, 11847G>A (splicing defect/169frameshift), 4181G>C (S486T)	Lim	Marez et al. 1997	
<u>▼</u> CYP2D6*4.006	CYP2D6*4F	PV00257	100C>T (P34S), 973C>A (L91M), 983A>G (H94R), 996C>G, 1662G>C, 1847G>A (splicing defect/169frameshift), 1859C>T, 4181G>C (S486T)	Lim	Marez et al. 1997	

ALLELE FREQUENCIES VARY BY ETHNICITY: CYP2D6 AND CYP2C19 EXAMPLES

Allele	Europeans	African	East Asian	South Asian	American
CYP2C19*2	18.3	18.1	31.0	34.0	10.1
CYP2C19*3	rare	rare	6.7	rare	rare
CYP2C19*17	22.4	23.5	1.5	13.6	12.0
CYP2D6*3	4.1	rare	rare	rare	rare
CYP2D6*4	15.5	11.9	rare	11.6	15.7
CYP2D6*5	3.0	4.0	6.5	2.0	3.0
CYP2D6*10	rare	3.2	58.7	6.5	rare
CYP2D6*17	rare	19.7	rare	rare	1.0
CYP2D6*29	rare	9.2	rare	rare	rare
CYP2D6*41	3.0	3.0	3.0	13.5	3.5
CYP2D6xN	2.3	9.3	2.0	1.5	1.0

EFFORTS TO STANDARDIZE THE "MUST TEST" PGX VARIANTS UNDERWAY

- CURRENTLY PUBLISHED FOR CYP2C9 AND CYP2C19
- CYP2D6 IS IN PROGRESS, OTHER GENES PLANNED
- ORGANIZED INTO TIERS OF VARIANTS
- GUIDELINES AND RELATED WEBINARS ARE AVAILABLE THROUGH AMP.ORG
- RECOGNIZED BY THE COLLEGE OF AMERICAN PATHOLOGISTS.

Term/Gene Category	Final Term ^a	Functional Definition	Genetic Definition	Example diplotypes/alleles
Allele Functional	Increased Function	Function greater than normal function	N/A	CYP2C19*17
Status-all genes	Normal Function	Fully functional/wild-type	N/A	CYP2C19*1
	Decreased Function	Function less than normal function	N/A	CYP2C19*9
	No Function	Non-functional	N/A	CYP2C19*2
	Unknown Function	No literature describing function or the allele is novel	N/A	CYP2C19*29
	Uncertain Function	Literature supporting function is conflicting or weak	N/A	CYP2C19*12
Phenotype-Drug	Ultra-rapid Metabolizer	Increased enzyme activity compared to rapid	Two increased function alleles, or more	CYP2C19*17/*17
Metabolizing Enzymes		metabolizers.	than 2 normal function alleles	CYP2D6*1/*1XN
(CYP2C19, CYP2D6, CYP3A5,	Rapid Metabolizer	Increased enzyme activity compared to normal metabolizers but less than ultra-rapid metabolizers.	Combinations of normal function and increased function alleles	CYP2C19*1/*17
CYP2C9, TPMT, DPYD, UGT1A1)	Normal Metabolizer	Fully functional enzyme activity	Combinations of normal function and decreased function alleles	CYP2C19*1/*1
	Intermediate Metabolizer	Decreased enzyme activity (activity between normal and poor metabolizer)	Combinations of normal function, decreased function, and/or no function alleles	CYP2C19*1/*2
	Poor Metabolizer	Little to no enzyme activity	Combination of no function alleles and/or decreased function alleles	CYP2C19*2/*2
Phenotype- Transporters and	Increased Function	Increased transporter function compared to normal function.	One or more increased function alleles	SLCO1B1*1/*14
non-drug metabolizing enzymes ^b	Normal Function	Fully functional transporter function	Combinations of normal function and/or decreased function alleles	SLCO1B1*1/*1
(SLCO1B1)	Decreased Function	Decreased transporter function (function between normal and poor function)	Combinations of normal function, decreased function, and/or no function alleles	SLCO1B1*1/*5
	Poor Function	Little to no transporter function	Combination of no function alleles and/or decreased function alleles	SLCO1B1*5/*5
Phenotype-Carrier status (<i>HLA-B</i>)	Positive	Detection of high-risk allele	Carrier of high-risk allele	HLA-B*15:02
	Negative	High risk-allele not detected	Not a carrier of high-risk allele	
		g., CYP2D6 Poor metabolizer, TPMT Normal metabolize of the CPIC guideline authors if applicable for genes that		

Citation: Clin Transl Sci (2019) XX, 1-9; doi:10.1111/cts.12692

ARTICLE

Standardizing CYP2D6 Genotype to Phenotype
Translation: Consensus Recommendations from the
Clinical Pharmacogenetics Implementation Consortium
and Dutch Pharmacogenetics Working Group

Kelly E. Caudle^{1,*}, Katrin Sangkuhl², Michelle Whirl-Carrillo², Jesse J. Swen³, Cyrine E. Haidar¹, Teri E. Klein², Roseann S. Gammal^{1,4}, Mary V. Relling¹, Stuart A. Scott^{5,6}, Daniel L. Hertz⁷, Henk-Jan Guchelaar³ and Andrea Gaedigk^{8,9}

- CHANGED PHENOTYPE PREDICTIONS TO NARROW THE RANGE FOR "NORMAL" WHICH INCREASED THE EXPECTED PROPORTION OF INTERMEDIATE METABOLIZERS
- EMPHASIS ON ACTIVITY SCORES; CHANGED ACTIVITY SCORE OF CYP2D6*10 TO 0.25

GENETIC VARIATION IN DRUG METABOLIZING ENZYMES IS ALSO USED TO PREDICT THE CYP2D6 ACTIVITY SCORE

Allele functional status	Allele activity score
Normal function	1
Decreased function	0.5
*10	0.25
No function	0

The CYP2D6 activity score is a quantitative value based on the sum of the allele activity scores

(Allele 1 Score) + (Allele 2 Score) = Total Score

May be modified based on known coadministration of inhibitors or inducers

Table 3 Final consensus CYP2D6 genotype to phenotype translation compared to previously reported CPIC and DPWG methods

Inferred CYP2D6 phenotype	Previous CPIC definition (AS)	Previous DPWG definition (AS)	Consensus definition (AS)	Consensus contiguous definition (AS)	Examples of CYP2D6 diplotypes for consensus translation method
UM	> 2	> 2.5	> 2.25	> 2.25	*1/*1xN, *1/*2xN ^b , *2 ^a /*2xN ^b , *1x2/*9
NM	1–2	1.5-2.5	1.25	$1.25 \le x \le 2.25$	*1/*10
			1.5		*1/*41, *1/*9
			2.0		*1/*1, *1/*2
			2.25		*2x2/*10
IM	0.5	0.5–1	0.25	0 < x < 1.25	*4/*10
			0.5		*4/*41, *10/*10
			0.75		*10/*41
			1		*41/*41, *1/*5
PM	0	0	0	0	*3/*4, *4/*4, *5/*5, *5/*6

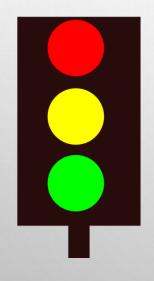
AS, activity score; CPIC, Clinical Pharmacogenetics Implementation Consortium; DPWG, Dutch Pharmacogenomics Working Group; IM, intermediate metabolizer; NM, normal metabolizer; PM, poor metabolizer; UM, ultrarapid metabolizer.

^aCYP2D6*2 is currently considered to be a normal function allele by CPIC and DPWG; however, this function assignment has been challenged³² and some laboratories report CYP2D6*2 function differently. Function of this allele will be reassessed as additional data become available. ^bN is categorical and indicates the number of copy variants (e.g., *1x2, *1x3, etc).

GENE-BASED DOSING GUIDELINES AS OF 4/16/2020

- ROYAL DUTCH ASSOCIATION FOR THE ADVANCEMENT OF PHARMACY PHARMACOGENOMICS WORKING GROUP (DPWG), N=93
- CLINICAL PHARMACOGENETICS IMPLEMENTATION CONSORTIUM (CPIC), N=54
 - YOUTUBE VIDEO GUIDELINES AVAILABLE FOR SOME
- CANADIAN PHARMACOGENOMICS NETWORK FOR DRUG SAFETY (CPNDS), N=8
- PROFESSIONAL ORGANIZATIONS (E.G. ONCOLOGY, INFECTIOUS DISEASE)

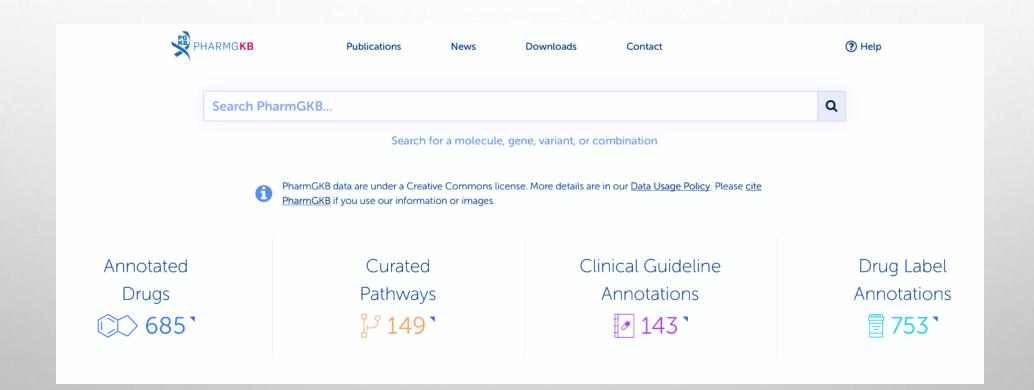
COMMERCIAL SOFTWARE PRODUCTS



- PROPRIETARY COMMERCIAL PRODUCTS ARE AVAILABLE
 - INDEPENDENT OF LAB (E.G., GENEDOSE™, YOUSCRIPT®)
 - EXCLUSIVE TO A LAB (E.G., PGXONE™ VIA ADMERA HEALTH, GENESIGHT® VIA ASSUREX HEALTH, DNA INSIGHT® VIA PATHWAY GENOMICS)
- SOME INTEGRATE GENETICS WITH CLINICAL AND DEMOGRAPHIC DATA AND/OR OFFER INTERACTIVE RISK MITIGATION TOOLS FOR POLYPHARMACY
- ALL TOOLS PROVIDE DECISION SUPPORT TOOLS BUT FEW ARE SUPPORTED BY RANDOMIZED CLINICAL TRIALS, AND NO STUDIES DIRECTLY COMPARE EFFECTIVENESS OF THE CLINICAL DECISION SUPPORT

GUIDANCE STRATEGIES

DRUG SELECTION/AVOIDANCE


- RISK OF A SERIOUS ADVERSE DRUG REACTION
- LIKELIHOOD OF RESPONSE

OPTIMIZE DOSING

- ESTIMATE OPTIMAL DOSE AND DOSING FREQUENCY
 - STANDARD
 - LOWER THAN USUAL (SENSITIVE)
 - HIGHER THAN USUAL (RESISTANT)
- OFTEN RECOMMEND TDM

LEVELS OF EVIDENCE: BENZODIAZEPINES

	CYP2C9	CYP2C19	CYP3A4	CYP3A5	UGT2B15	SCNIA
Clobazam		2A				3
Diazepam	NR	3				
Oxazepam					3	
Midazolam			3	3		
Lorazepam					3	

Disclaimers apply to this and the next several slides:

- Levels of evidence represent those curated by the PharmGKB.org wherein 1A is the highest possible level
- The genes and drugs provided are examples and do not represent all relevant drug/gene associations

LEVELS OF EVIDENCE: STIMULANTS (E.G. ADHD)

	ABCB1	CYP2D6	ADRA2A	СОМТ	DRD2/ANNK1	HTRIA	SLCA2
Amphetamine					3		
Methamphetamine						3	
Atomoxetine		1A					3
Methylphenidate	3		3	3			3
Modafinil	3			3			

LEVELS OF EVIDENCE: ANTIPSYCHOTICS

	ABCB1	CYP2C9	CYP2D6	СОМТ	DRD2/ANNK1	HTR1A	HTR2A	MTHFR
Aripiprazole			3		3			
Clozapine	3			3	3	3		3
Haloperidol			3	3				
Lithium	3							
Olanzepine	3	3			3	3	3	3
Quetiapine				3		3		
Risperidone	3		2A	3	2A	3	3	

LEVELS OF EVIDENCE: ANTIDEPRESSANTS

	ABCB1	CYP2B6	CYP2C19	CYP2D6	COMT	GRIK4	HTR1A	HTR2A	SLC6A1
Amitriptyline	3		1A	1A					
Nortriptyline	3			1A					
Bupropion		2A	3		3			3	
Citalopram	3		1A	3		2B		2B	
Fluoxetine				1A	3		3	3	
Paroxetine	3			1A		2B	2B	3	
Sertraline			1A			2B	3		
Venlafaxine	3			2A	3				3

EXAMPLES OF POSITIVE OUTCOMES FROM MULTI-GENE PGX TESTING

- IMPROVED ANTIDEPRESSANT EFFICACY AND ADHERENCE
 - 2.52-FOLD GREATER RATE OF REMISSION OF MAJOR DEPRESSIVE DISORDER WITH TESTING (SINGH, CLIN PSYCHOPHARMACOLOGY NEUROSCIENCE, 2015)
- REDUCED PHARMACY COSTS
 - \$1035.60 SAVINGS OVER 1 YR IN TOTAL MEDICATION COSTS WITH TESTING IN COHORT OF PSYCHIATRIC PATIENTS (WINNER ET AL, CURRENT MEDICAL RESEARCH & OPINION, 2015)
- REDUCED RATES OF HOSPITALIZATION
 - 9.8% WITH TESTING VERSUS 16.1% WITHOUT TESTING IN COHORT OF PATIENTS ≥65 YRS (BRIXNER ET AL, J MEDICAL ECONOMICS, 2015)
- REDUCED LENGTH OF STAY IN A PSYCHIATRIC HOSPITAL
 - 36.3 DAYS VS 46.6 DAYS (BATTIG VAD ET AL, PHARMACOPSYCHIATRY, 2020)

PROPOSED MINIMUM GERMLINE PGX PANEL FOR PSYCHIATRY

- EVIDENCE BASED PANEL INCLUDES 16 VARIANT ALLELES WITHIN FIVE GENES:
 - CYP2C9, CYP2C19, CYP2D6
 - · HLA-A, HLA-B
- RELEVANT TO ANTIDEPRESSANTS,
 ANTIPSYCHOTICS, STIMULANTS, BENZODIAZEPINES,
 MOOD STABILIZERS, ETC.

- CONSISTENT WITH PUBLISHED CPIC
 GUIDELINES:
 - TRICYCLICS (N=7)
 - SELECTIVE SEROTONIN REUPTAKE INHIBITORS (N= 5)
 - ATOMOXETINE
 - ANTICONVULSANTS (N=3)

Bousman et al, Curr Opin Psych 32(1):7-15, 2019

cpicpgx.org

EXPANDED PGX PANELS FOR BEHAVIORAL HEALTH

POSSIBLE PROS

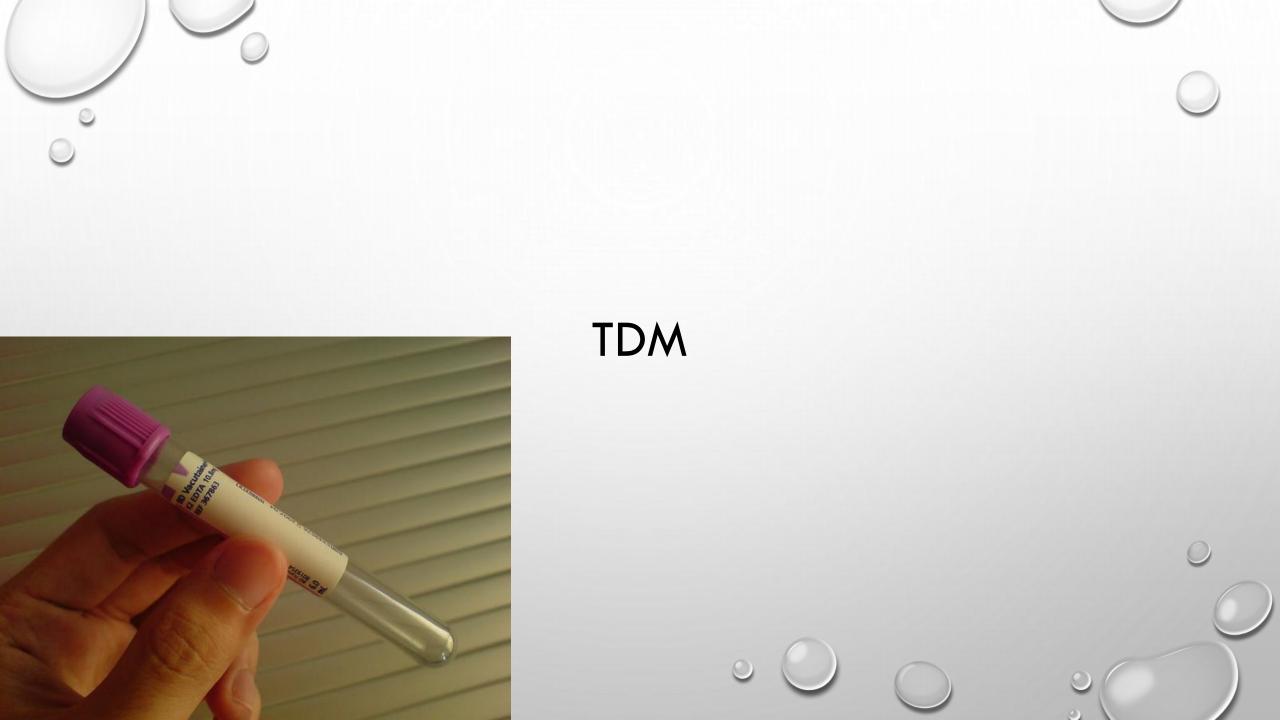
- A BROAD TEST COULD PROVIDE GUIDANCE FOR A LARGE NUMBER OF DRUGS BY CONSIDERING MULTIPLE ASPECTS OF PK AND PD
- MAY PROMOTE A MORE INTENSIVE REVIEW OF MEDICATIONS, PARTICULARLY FOR POLYPHARMACY PATIENTS
- MANY MULTI-GENE TESTS CAN BE CONSOLIDATED
 TO MINIMIZE TIME TO RESULT AND COSTS

POSSIBLE CONS

- INCONSISTENCIES IN CONTENT AMONG COMMERCIALLY AVAILABLE TESTS
- WEIGHTED CONTRIBUTION OF MULTIPLE GENE VARIANTS TO THE DRUG RESPONSE PHENOTYPE PREDICTION MAY NOT HAVE BEEN WELL STUDIED
- REIMBURSEMENT MAY BE POOR FOR GENES THAT ARE NOT REPRESENTED BY FDA LABELING OR PUBLISHED GENE-BASED DOSING GUIDELINES

SOURCES OF INACCURATE PGX RESULTS

• PRE-ANALYTIC:


- ORDERING THE WRONG TEST
- INTERFERING SUBSTANCES (E.G. PRESERVATIVE)
- SPECIMEN QUALITY
- NON-STANDARD SPECIMEN
- SPECIMEN MIX-UP

ANALYTIC :

- INSTRUMENT
- ASSAY DESIGN
- REAGENTS
- CONTAMINATION
- UNDETECTED ALLELE DROPOUT

POST-ANALYTIC :

- INSUFFICIENT CONTENT LEADING TO INACCURATE DIPLOTYPE CALLS, MISSED ALLELES
- MISINTERPRETATION OF *1
- INACCURATE INTERPRETATION
 - PHENOTYPE PREDICTION
 INACCURATE OR INCONSISTENT
 WITH
 FUNCTIONAL/BIOCHEMICAL/CLINIC
 AL PHENOTYPE
 - INAPPROPRIATE DRUG-GENE GUIDANCE
 - UNRECOGNIZED SUBSTRATE SPECIFICITY OF DRUG-GENE INTERACTIONS
 - MULTI-GENE IMPACT(S)
 - NON-GENETIC IMPACT(S)

- MANDATORY, FOR SAFETY
- THERAPEUTIC RANGE ESTABLISHED FOR MEDICATIONS OF INTEREST
- NARROW THERAPEUTIC RANGE
- CONCERNS ABOUT PATIENT ADHERENCE
- CONCERNS ABOUT PHARMACOKINETICS (E.G., CLINICAL STATUS, EXTREME AGES, PGX RESULTS)
- POLYPHARMACY AND/OR CHANGES IN MEDICATIONS
- PATIENT HAS FAILED TO RESPOND OR RESPONSE HAS DETERIORATED
- PATIENT HAS EXPERIENCED A SERIOUS ADVERSE DRUG REACTION
- RELEVANT TESTING IS AVAILABLE WITH REASONABLE LOGISTICS

TDM EXAMPLE: ATYPICAL ANTIPSYCHOTICS

	Dose range (mg/d)	Therapeutic range in plasma (ng/mL), C _{min}	Level of recommendation for TDM (scale of 1-5)
Amisulpride	300-800	200-320	1
Aripiprazole	15-30	150-210	2
Clozapine	200-600	350-500	1
Olanzepine	10-20	20-40	1
Quetiapine	200-600	50-500	2
Paliperidone	3-12	20-60	2
Risperidone	2-4	20-60	2
Ziprasidone	120-160	50-130	2

INTEGRATING PGX AND TDM FOR RISPERIDONE

- CALCULATED RISPERIDONE/9-OH RATIO AND COMPARED GENETICALLY DERIVED PHENOTYPE TO PUBLISHED MEDIAN:
 - UM ~ 0.03
 - NM ~ 0.08
 - IM ~ 0.56
 - PM ~ 2.5
- STRONG CYP2D6 INHIBITOR >1
- CYP3A4 INHIBITORS AND RENAL INSUFFICIENCY MAY ALSO CHANGE PHENOTYPE

- PROPOSED MODEL TO PREDICT REAL-WORLD PHENOTYPE WITH A CONCENTRATION-TO-DOSE (C/D) RATIO UNDER C_{MIN} CONDITIONS
 - DETERMINE NORMAL C/D
 - (TOTAL RISPERIDONE + 9-OH IN NG/ML) / (RISPERIDONE DOSE IN MG/D)
 - C/D < 1/2 OF NORMAL ~ DOSE TOO LOW
 - C/D > 2X NORMAL ~ DOSE TOO HIGH

SOURCES OF INACCURATE TDM RESULTS

PRE-ANALYTIC :

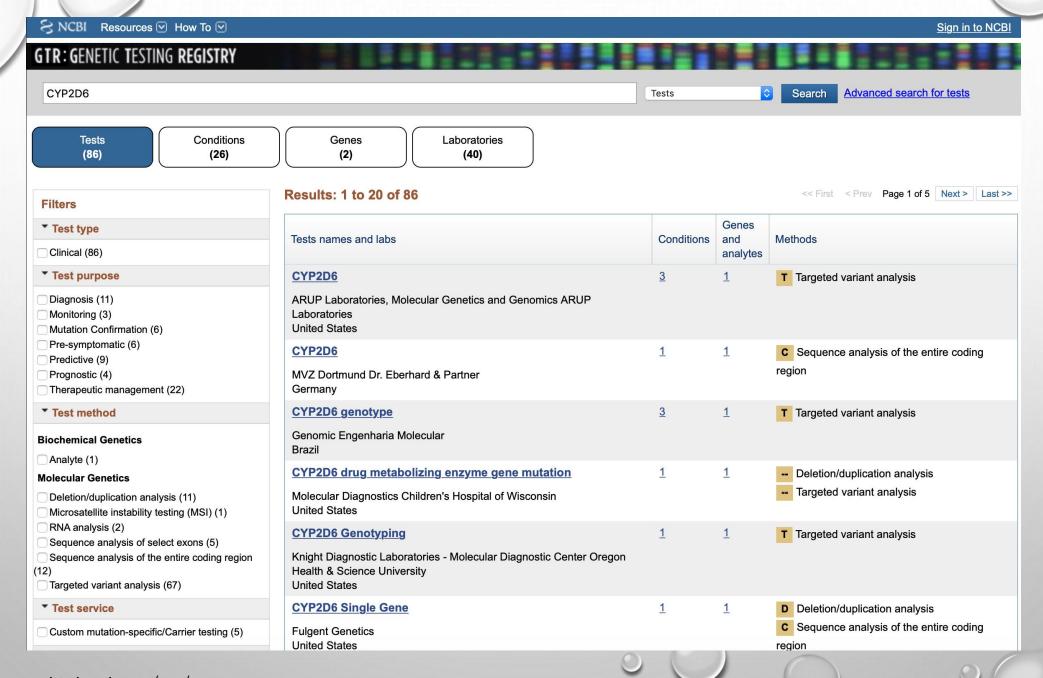
- TIMING OF SPECIMEN COLLECTION RELATIVE TO LAST DOSE
- ORDERING THE WRONG TEST
- INTERFERING SUBSTANCES (E.G. PRESERVATIVE)
- SPECIMEN QUALITY
- NON-STANDARD SPECIMEN
- SPECIMEN MIX-UP

• ANALYTIC:

- INSTRUMENT
- ASSAY DESIGN
- INTERFERENCE
- CONTAMINATION

POST-ANALYTIC:

- INACCURATE INTERPRETATION
 - ADHERENCE
 - UNRECOGNIZED CO-MEDICATIONS OR OTHER CHANGES THAT COULD AFFECT PHARMACOKINETICS
 - INAPPROPRIATE THERAPEUTIC RANGE
 - ASSUMED EQUALITY TO PREVIOUS/ALTERNATE LABORATORY METHODS



SUCCESSFUL IMPLEMENTATION

PICKING THE RIGHT TEST

- TEST CONTENT SHOULD ALIGN WITH PATIENT POPULATION, CLINICAL INDICATION(S) AND AVAILABLE INTERPRETATION TOOLS
 - PGX
 - GENES INCLUDED ?
 - VARIANTS DETECTED, WHICH MAY DEPEND ON TECHNOLOGY USED FOR TESTING
 - TDM
 - DRUGS AND METABOLITES INCLUDED ?
 - ANALYTICAL MEASUREMENT RANGE IS APPROPRIATE
- LOGISTICS
 - SPECIMEN AND APPROPRIATE HANDLING
 - TIME TO RESULT
 - COST/REIMBURSEMENT

FACTORS THAT CONTRIBUTE TO SUCCESSFUL IMPLEMENTATION OF PGX AND TDM

- MULTI-DISCIPLINARY APPROACH :
 - LABORATORY
 - PHARMACY
 - PROVIDERS
 - ADMINISTRATORS/PAYERS
 - REGULATORS
- TRANSPARENCY ABOUT WHEN TO ORDER WHICH TESTS
- CONSENSUS ON HOW RESULTS WILL BE UTILIZED; ALGORITHMS ARE OFTEN HELPFUL
- EDUCATION

Priority should be on promoting safety and good patient care!

CONCLUSIONS

- PGX TARGETS PREDICT DISCRETE ASPECTS OF PHARMACOLOGY
- CLINICAL APPLICATIONS OF PGX SHOULD ALIGN WITH NEEDS, AND CONSIDER THE EVIDENCE BEHIND ANY DRUG-GENE ASSOCIATION
- NON-GENETIC FACTORS ARE ALSO CRITICAL COMPONENTS OF MEDICATION MANAGEMENT
- NO PGX TEST CAN REPLACE THE NEED FOR CLINICAL AND THERAPEUTIC MONITORING
- TDM MAY REPRESENT THE BEST OPPORTUNITY FOR DOSE OPTIMIZATION
- SUCCESSFUL IMPLEMENTATION REQUIRES AN MULTI-DISCIPLINARY APPROACH

THANK YOU FOR YOUR ATTENTION!

GWEN.MCMILLIN@ARUPLAB.COM