Introduction to Parasitology

The basics are just the beginning

Marc Roger Couturier Ph.D., D(ABMM)

Medical Director, Parasitology – ARUP Laboratories Professor of Pathology – University of Utah

Blaine A. Mathison B.S., M(ASCP)

Research and Development Scientist, Parasitology Specialist – ARUP Laboratories Adjunct Instructor – University of Utah

Objectives for Learning

Understand parasite diversity/taxonomy

Recognize clinically relevant parasites found in humans and how to test for them

Understand the impact and role of parasites in human health

Parasitology Structure

- Basic overview of all sites
- Focus on:
 - » Brain/Central nervous system
 - » Skin/Soft tissue
 - » Lungs
 - » Liver
 - » GU
 - » Blood (See separate video)

What is a parasite?

An organism that derives a survival benefit from a host at the expense of the host.

Key Concepts in Parasitism

- Definitive Host where sexual maturity and reproduction occur for completion of transmission cycles
- Intermediate Host where asexual or developmental stages occur (e.g. larvae development, excystation, etc). Not competent for development to final lifecycle stages
- Paratenic Host a host which harbors an immature stage but no further development of the parasite occurs; used for further transmission
- Reservoir Host a primary host that maintains a parasite in nature
- Dead-end or Accidental Host where various levels of parasite life cycle can occur, but the parasite cannot complete the entire life cycle and fails to perpetuate gametes/fully mature.

Broad (Medical) Classification of Parasites

- Helminth worm
 - » Flatworms Platyhelminths (only 2 parasitic classes)
 - Cestoda tapeworms
 - Trematoda flukes
 - » Roundworms Nematoda

Ascaris

Taenia

Paragonimus

Broad (Medical) Classification of Parasites

- Protozoa unicellular eukaryotic free-living or parasitic organisms
 - » Ameba
 - » Coccidia
 - » Flagellates
 - » Ciliates

- » Stramenopiles
- » Microsporidia*

Entamoeba

Giardia

Cyclospora

Balantioides

Broad (Medical) Classification of Parasites

- Arthropods –eukaryotic free-living or parasitic organisms
 - » Mites
 - » Lice
 - » Fleas
 - » Ticks
 - » Fly larvae (myiasis)
 - » True bugs

Pubic louse

8

Scabies mites

Diagnostics

- Specimen dependent/organism dependent
 - » Each organism discussed in more detail within body systems
- Broad types of tests include:
 - » Stool parasite examinations
 - » Body fluid parasite examinations and cytology
 - » Histopathology of tissue
 - » Antigen detection
 - » Antibody detection (serology)
 - » Nucleic acid amplification tests (NAAT)
 - » Culture (very limited use)

Diagnostics - Microscopy

- Stool examination
 - » Wet mount and permanent stain (trichrome)» Other special stains

• Tissue » H&E stains

Diagnostics – Antigen detection

- Detection of antigen (immuno-stimulatory component) from a parasite in a patient specimen
- Variable in performance and specimen types » Blood & stool
- Rapid time to result

Diagnostics – Antibody detection

- Detection of antibody from a patient that recognizes antigen(s) from a parasite
- Variable in performance and specimen types » Serum and CSF
- Moderate time to result, limited availability

Diagnostics – NAAT

- Detection of nucleic acid from a parasite in a patient specimen
- Variable in specimen types, excellent specificity » Sensitivity depends on organism and biology
- Long time to result for rare parasites, limited availability » Stool parasites can be faster and readily available

100000000000

Diagnostics – Culture

- Limited utility in parasitology
- Insensitive
- Not routinely performed in most labs
- Can be biosafety risk

Acanthamoeba in culture

Organ Systems

- Brain/Central nervous system
- Skin/Soft tissue
- Lungs
- Liver
- GU

Parasites of the Brain/Central Nervous System

- Caused by apicomplexan parasite, *Toxoplasma gondii*
- Transmission occurs via:
 - » Eating undercooked meat of animals harboring tissue cysts
 - » Food, water, fomites contaminated with cat feces containing infectious oocysts
 - Contaminated soil or changing cat litter box
 - » Blood transfusion
 - » Organ transplantation
 - » Transplacentally from mother to fetus.

- Cats are definitive hosts
- Humans are dead-end hosts

- Common sites of human infection are skeletal muscle, myocardium, brain, eyes.
- Symptoms
 - » Acute disease often asymptomatic; cervical lymphadenopathy and flu-like illness
 - » Immunodeficient patients will have localized symptoms based on body site
 - » Ocular disease: vision loss
 - » AIDS patients: toxoplasmic encephalitis.

Peripheral retinochoroiditis

- Diagnosis is primarily by serology (IFA, IgG/IgM EIA); PCR of aspirates; tissue cysts & tachyzoites may be observed in biopsy specimens & aspirates.
 - » Radiologic findings of: "ring enhancing lesions"
 - Not specific to toxoplasmosis, but supports serology
- Treatment: pyrimethamine, folinic acid (leucovorin), & sulfadiazine in immunocompromised patients & congenitallyinfected newborns.

CT Scan showing ring enhancing lesions

Primary Amebic Meningoencephalitis (PAM)

- Caused by the free-living ameba, Naegleria fowleri
- Not a "true parasite": human infection is incidental & most cases fatal. Part of natural fauna of warm, fresh water.
- Route of infection is through the nasal mucosa
- Typically in children, teens, and young adults
- Symptoms

- » Hemorrhagic-necrotizing meningoencephalitis
 -> severe CNS dysfunction
- » Rapid onset
- » High case-fatality rate

Life Cycle of Naegleria fowleri

Trophozoites in CSF

Primary Amebic Meningoencephalitis (PAM)

- Diagnosis usually made on autopsy by histopathology examination of brain tissue
 - » Observation of live trophozoites in fresh wet mount of CSF; confirm with Giemsa, trichrome
 - » PCR of CSF (CDC, large reference labs)
 - » Culture [delay issues]
- Treatment: Miltefosine + medically controlled hypothermia

Granulomatous Amebic Encephalitis (GAE)

- Caused by free-living amebae *Balamuthia mandrillaris* & *Acanthamoeba* spp.
- Not 'true parasites'; part of normal soil and water fauna. Humans are accidental hosts.
- Route of infection: lower respiratory tract or ulcerated or broken skin.

» *Acanthamoeba* species can also enter the eye, causing amebic keratitis (AK)

- Symptoms
 - » Meningoencephalitis/encephalitis
 - » More chronic than PAM

Life Cycle of Acanthamoeba/Balamuthia

Balamuthia in brain tissue, H&E stain

Granulomatous Amebic Encephalitis (GAE)

- More commonly seen in immunocompromised patients
- Diagnosis usually made on autopsy by histopathology examination of brain tissue
 - » Giemsa and calcofluor white stain of specimens
 - » Culture
 - » PCR (CDC, large reference labs)
- Treatment: None. Most cases are fatal

Free-living Amebic Infections

	Primary Amebic Meningoencephalitis	Granulomatous Amebic Encephalitis
Causal Agent(s)	Naegleria fowleri	Acanthamoeba spp., Balamuthia mandrillaris
Source of Infection	Inhalation when water forced into nasal cavity	Inhalation to lower respiratory tract; cuts and abrasions
Route to brain	Olfactory nerve	Hematogenous
Risk groups	Children, teens, young adults	Usually immunocompromised
Diagnosis	Wet mounts/Giemsa stain, PCR, histopathology, [culture]	Giemsa/Calcoflour white stains; PCR; histopathology; [culture]
Stage(s) in human tissue	Trophozoites only	Trophozoites, cysts
Treatment	Amphotericin B, Mitefosine + therapeutic hypothermia	Combos of pentamidine, sulfadiazine, flucytosine, AND fluconazole or itraconaconazole (<i>Acanthamoeba</i>) or azithromycin or clarithromycin (<i>Balamuthia</i>)

Neurocysticercosis

- Caused by the <u>larval</u> stage (cysticercus) of Taenia solium (the 'pork' tapeworm).
 - » Latin America, SE Asia
- Acquired: eating *T. solium* eggs in food, fomites contaminated with <u>human</u> stool.
- Clinical manifestations: vary by number, size, & state of cysticerci & inflammatory response to degenerating cysts.
 - » Epilepsy most-common manifestation, also intracranial hypertension, hydrocephalus, chronic meningitis, & cranial nerve abnormalities

Degrading cysticercus in brain biopsy

Neurocysticercosis

- Diagnosis primarily by imaging, confirmed w/ antibody detection
 » EIA for initial screening
 - » CDC immunoblot recommended by WHO & PAHO for confirmation
- Larval worms may be seen in biopsy specimens, but undesirable to biopsy the brain
- Treatment: control of symptoms; antihelminthic therapy might increase symptoms!
 - » Corticosteroids usually co-administered to combat these effects.
 - » Albendazole may be better than praziquantel; combined albendazole/praziquantel with corticosteroids if >2 active parenchymal cysts

Angiostrongyliasis

- Caused by the nematode, *Angiostrongylus cantonensis*.
 » Human infection in Asia/South Pacific; Africa, Latin America, Caribbean, Hawaii
- Natural definitive hosts are rats; intermediate hosts are mollusks
- Human infection: ingesting raw or undercooked snails and slugs containing infectious (third stage, L3) larvae
- Clinical symptoms: bi-temporal headache, nausea, vomiting, stiff neck, & eosinophilic pleocytosis of the CSF
 - » Symptoms related to death of larvae in brain and directly proportional to parasite load

Life Cycle of Angiostrongylus Cantonensis Angiostrongylus cantonensis

L4/young adult in brain autopsy specimen

Angiostrongyliasis

- Diagnosis:
 - » PCR (CDC, HI DOH)
 - » Observations of L4 larvae in CSF or brain biopsy/autopsy specimens
 - » Antibody detection not available in the US
- Treatment usually limited to analgesics for pain and corticosteroids for inflammation; removal of CSF to relieve headache and pressure

Parasites of the Skin and Soft tissue

Leishmaniasis

- Caused by hemoflagellate protozoa, *Leishmania*
- Infect many mammals
 - » 21 of 30 known species infect humans
- Vectored to humans by the phlebotomine sand fly
- Geographically dispersed:
 - » Tropic/sub-tropics
 - C. & S. America
 - Africa
 - Asia

- Middle East
- S. Europe

www.who.int

Leishmaniasis

- Clinical manifestations
 - » Cutaneous (pizza lesion)
 - Painless or painful
 - » Mucocutaneous
 - Disemination of cutaneous
 - » Visceral (kala-azar)
 - Fever, weight loss, hepatosplenomegaly
 - Anemia
 - Thrombocytopenia
 - Leukopenia
- Different species w/ different clinical manifestations

Leishmaniasis

- Diagnosis:
 - » Histopathologic examination of tissue (biopsy, aspirate)
 - » Serology
 - » PCR
- Treatment:
 - » Pentavalent antimony (investigational from CDC)
 - » Liposomal amphotericin B (visceral only)
 - » Miltefosine (cutaneous, mucocutaneous, visceral)

H&E stained skin biopsy

Trichinellosis

- Caused by nematode, Trichinella
- Acquired: ingestion of undercooked meat containing encysted larvae
- Geographically dispersed:
 - » Worldwide with bias towards
 - Europe
 - N. America

38

Trichinellosis

- Symptoms:
 - » May be asymptomatic
 - » Initially GI: diarrhea, cramping, emesis
 - » >1 Week: Muscle invasion
 - Periorbital & facial edema
 - Fever, myalgias, rashes
 - Peripheral eosinophilia
 - » Larvae encyst in muscle: myalgia & weakness → cessation of symptoms
- Diagnosis:
 - » Social history
 - » Serology
 - » Tissue stain & microscopy

Encysted larvae in muscle H&E stain

Onchoceriasis

- Caused by the nematode Onchocerca volvulus
- Acquired via the bite of *Simulium* (black fly)
- Geographically constrained:
 » Africa (Sub-Saharan)
 » Latin America (focal)
 » Middle East (Yemen)

Onchoceriasis

- Symptoms:
 - » Most symptoms are result of inflammatory reactions to dead or dying worms
 - Itchy skin rash
 - Subcutaneous nodules
 - Vision change
 - » Continued inflammation of cornea and optic nerve results in blindness
 - River blindness
- Diagnosis: skin snip and histology
- Treatment:
 - » Ivermectin

Scabies

- Sarcoptes scabiei (itch mite)
- Acquired by direct contact with mite infected surfaces
- Symptoms: Severe pruritius serpiginous burrows
 - » Common between digits and behind large joints
- Geographically distributed worldwide
 - » Low socioeconomic status
 - » Institutional settings
- Diagnosis: macroscopic identification of mite
- Treatment:
 - » Permethrin (human)
 - » Cleaning (environment)

Lice

- Pediculus humanus (head and body louse)
- Pthirus pubis (pubic louse)
- Symptoms: Itching of infected site
 - » Can transmit serious human diseases
 - Epidemic typhus, relapsing fever, trench fever
- Diagnosis: macroscopic identification of louse
- Treatment:
 - » Ivermectin lotion (human)
 - » Nit combing (human)
 - » Environmental cleaning

Pubic louse

Head louse

Parasites of Lung and Liver

Paragonimiasis

- Caused by lung flukes in the genus *Paragonimus*.
 - » *Paragonimus westermanni* & *P. heterotremus* in southeast Asia
 - » Paragonimus kellicotti in the United States.
- Infections occur from the ingestion of raw or undercooked freshwater crustaceans.
- Symptoms:

AR P^{*}LABORATORIES

- » Acute: diarrhea, abdominal pain, fever, cough, urticaria, eosinophilia
- » Chronic: cough, expectoration of discolored sputum ("iron fillings"), hemoptysis

'crab martini'

Life Cycle of Paragonimus spp.

Paragonimiasis

- Diagnosis
 - » morphology (eggs in respiratory specimens & stool)
 » Serology
- Treatment: praziquantel

Eggs of Paragonimus in respiratory specimen

Echinococcosis

- Caused by cestodes in the genus *Echinococcus*.
 - » *Echinococcus granulosus* (complex) cystic echinococcosis
 - » Echinococcus multilocularis alveolar echinococcosis
- Infection caused by the ingestion of tapeworm eggs in food and fomites contaminated with dog feces.
- Parasites cannot mature in human host (humans are dead-end hosts)
- Symptoms:
 - » Cystic: dependent on size, number, and location of cysts (hepatic, pulmonary most common)
 - Cyst rupture: anaphylaxis, urticarial, eosinophilia
 - » Alveolar: slow-growing, destructive tumor; abdominal pain and biliary obstruction (high case fatality rate untreated).

Life Cycle of *Echinococcus granulosus*

Protoscoleces in 'hydatid sand' in liver aspirate

Echinococcosis

- Diagnosis
 - » Imaging (CT, MRI)
 - » Antibody detection
 - » Morphology (e.g. hydatid sand in aspirates)
- Treatment:
 - » Albdendazole (praziquantel preoperative)
 - » Surgical removal of cyst (as indicated)
 - » PAIR (percutaneous aspiration, injection, reaspiration)
 - » Nothing (as indicated)

CT image of hepatic hydatid cyst

Visceral Larval Migrans

- Caused by larvae of nematodes of animals:
 - » Toxocara canis & T. cati (dogs and cats)
 - » Baylisascaris procyonis (raccoons) [predilection for CNS]
- Humans ingest fully-embryonated eggs
 - » Soil, food, & on fomites contaminated with feces of natural definitive host or eating paratenic hosts.

51

• Humans are dead-end hosts

- Symptoms: fever, myalgia, weight loss, cough, rashes, hepatosplenomegaly, hypereosinophilia
 - » Eosinophilic meningoencephalitis uncommon
 - » Ocular uveitis, retinitis, endophthalmitis

Life Cycle of Toxocara spp.

Cross sections of larvae in liver biopsy

Visceral Larval Migrans

- Diagnosis: antibody detection
- Treatment:
 - » Visceral: albendazole or mebendazole with steroids
 - » Ocular: albendazole or mebendazole with topical steroids

Clonorchiasis/Opisthorchiasis

- Caused by liver flukes *Opisthorchis viverrini, O. felineus,* and *Clonorchis sinensis* (Chinese liver fluke).
 - » *Clonorchis*: parts of Asia incl. China, Japan, Korea, Taiwan, & Vietnam.
 - » Opisthorchis viverrini: mainly in NE Thailand & Laos
 - » *O. felineus:* Eastern Europe and Russia.

AR P^{*}LABORATORIES

• Infection: ingestion of raw or undercooked fish containing metacercariae.

'*koi* ' – raw fish dish eaten in Laos and Thailand

Life Cycle of *Clonorchis sinensis*

Egg in wet mount of stool

GDPDx

Clonorchis sinensis

Clonorchiasis/Opisthorchiasis

- Symptoms related to worm burden
 - » Inflammation, intermittent obstruction of biliary ducts; abdominal pain (RUQ)
 - » Toxicity (metabolic products of worms), secondary bacterial infections
 - » Leading cause of cholangiocarcinoma; also cholangitis, cholecystitis, pancreatitis.
- Diagnosis: detection of eggs in feces.
- Treatment: praziquantel

Parasites of Genitourinary tract

Trichomoniasis

- Caused by the protozoa *Trichomonis vaginalis*
- Acquired by direct sexual contact with infected human
- Worldwide distribution

» Increased prevalence among populations w/multiple sexual partners

Trichomoniasis

- Symptoms:
 - » Women: vaginitis w/purulent discharge
 - Can lead to adverse pregnancy outcomes
 - Rarely cervical lesions, abdominal pain, dysuria
 - » Men: Typically asymptomatic
 - Rarely urethritis, prostatitis, epididymitis
- Diagnosis:

- » NAAT testing (preferred clinically)
- » Wet mount exam (obsolescence)
- Treatment: single dose metronidazole

Microsporidia

- Obligate intracellular *fungal* parasites of most animal phyla »Thought to be ingested
- Most-commonly seen in immunocompromised patients. » May disseminate
- Numerous species are known to be involved in human infections
- Treatment: Albendazole (for most species)

Human Microsporidiosis

CNS microsporidiosis:

E. cuniculi

E. intestinalis

Trachipleistophora anthropopthera

Skin lesions

Anncaliia algerae

<u>Gastrointestinal and biliary</u> <u>tract microsporidiosis</u>:

E. bieneusi

E. intestinalis

Ocular microsporidiosis:

Encephalitozoon spp. *(E. cuniculi, E. hellem, E. intestinalis)*

Vittaforma corneae Anncaliia algerae

Disseminated microsporidiosis:E. hellemE. cuniculiE. intestinalisTrachipleistophora anthropoptheraTrachipleistophora hominisTubulinosema acridophagus

Microsporidiosis - Diagnosis

Not readily detected by traditional stool O&P

 » Very small & do not retaining trichrome stain
 » Require special stains

- PCR and DNA sequencing typically used for species-level identification
 - » PCR not practical for routine screening.

Microsporidia stained with Modified trichrome

Key Points

- Toxoplasma cats, congenital infections, & immunocompromised hosts
- *Angiostrongylus* eosinophilic meningitis
- Cysticercosis Caused by the pork tapeworm but not acquired from eating pork! Brain lesions
- Naegleria Diving into fresh warm water, rapidly fatal meningoencephalitis
- Acanthamoeba brain and cornea infections, often fatal

Key Points

AR P^{*}LABORATORIES

- *Leishmania* disfiguring lesions, severe visceral form (*kala azar*)
- *Trichinella* undercooked pork/bear, larvae in muscles
- Onchocerca River Blindness, subcutaneous nodules
- *Paragonimus* Iron fillings → hemoptysis, raw crustaceans
- *Echinococcus –* liver cysts, sheep dog exposures
- *Chlonorchis* cholangiocarcinoma, raw fish
- *Trichomonas* Vaginitis w/discharge (♀), asymptomatic (♂)

A nonprofit enterprise of the University of Utah and its Department of Pathology

© 2020 ARUP LABORATORIES