Prenatal Screening for **Open Neural Tube Defects** and Aneuploidies LJ Perry, MD PGY-2

Disclosures

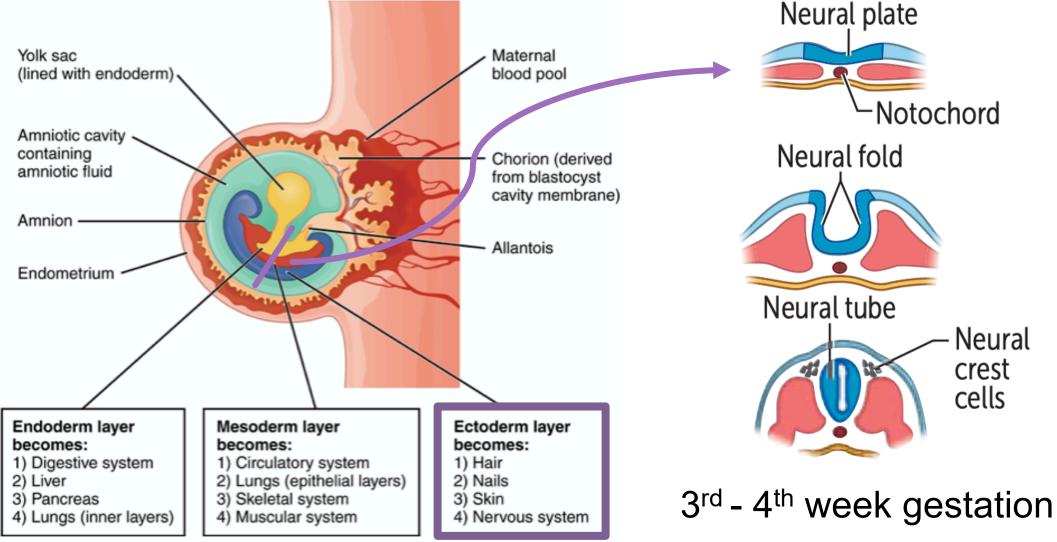
None

Learning Objectives

- 1) Understand the diseases detected by prenatal screening
- 2) Identify the analytes, measurements, and methodology used in prenatal screening
- 3) Interpret the results using multiple of the median and risk analysis

Outline

- Diseases detected by prenatal screening
- Screening tests, analytes, and methodology
- Interpretation of results
- Confirmation tests for positive screens


Diseases Detected by Prenatal Screen

Diseases Detected by Prenatal Screen

- Open neural tube defects (ONTD)
- Trisomy 21 (Down Syndrome)
- Trisomy 18 (Edwards Syndrome)
- Trisomy 13 (Patau Syndrome)

Open Neural Tube Defects

Neural Tube Development

https://opentextbc.ca/anatomyandphysiology/chapter/28-2-embryonic-development/


First Aid

Open Neural Tube Defects

- Pathogenesis: Failure of neural tube to close
- More superior = more severe
- Open = Defect exposed or covered by membrane
- Closed = Defect covered by skin

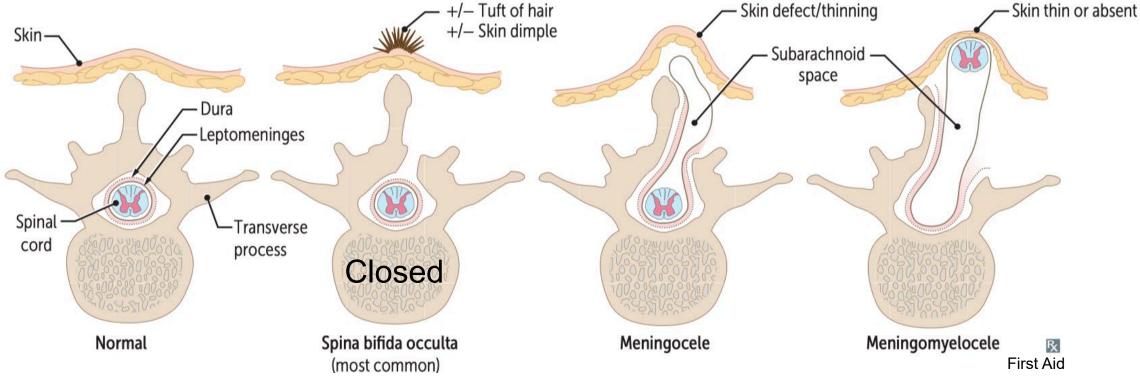
Open Neural Tube Defects

- Incidence: 5.5 per 10,000 births
- Risk factors
 - Folate deficiency
 - Folate antagonists
 - Diabetes
 - Obesity

https://www.semanticscholar.org/paper/Prevention-of-neural-tube-defects-(NTDs)-in-ethnic-Peake/ccfb8bf874316696951a1ab35156cb1f629291f4/figure/0

Superior ONTD

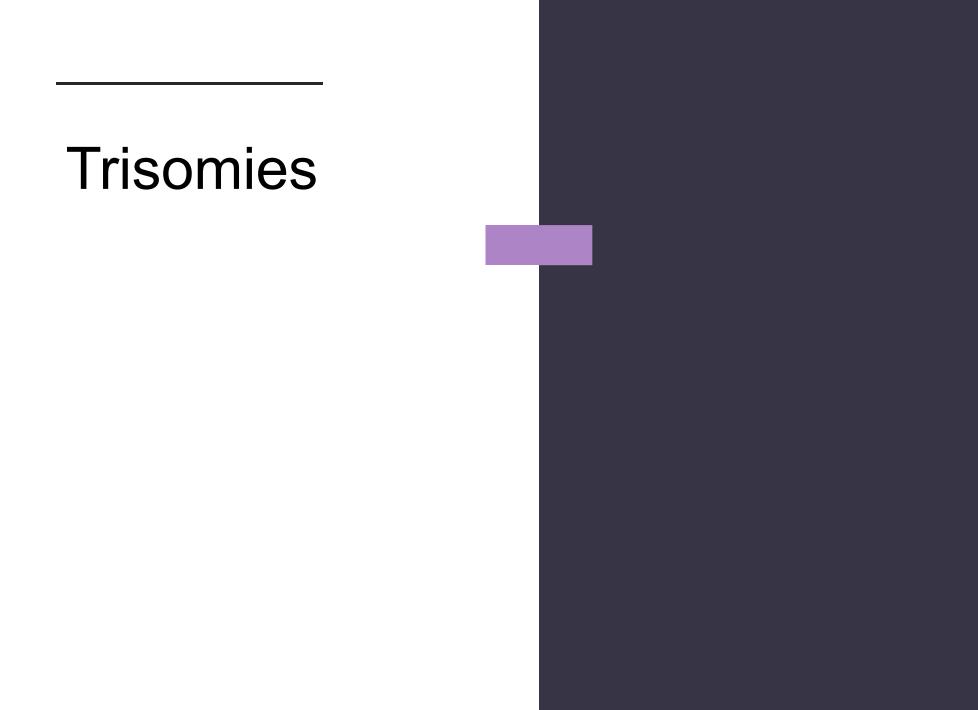
Anencephaly Open brain and lack of skull vault Lethal



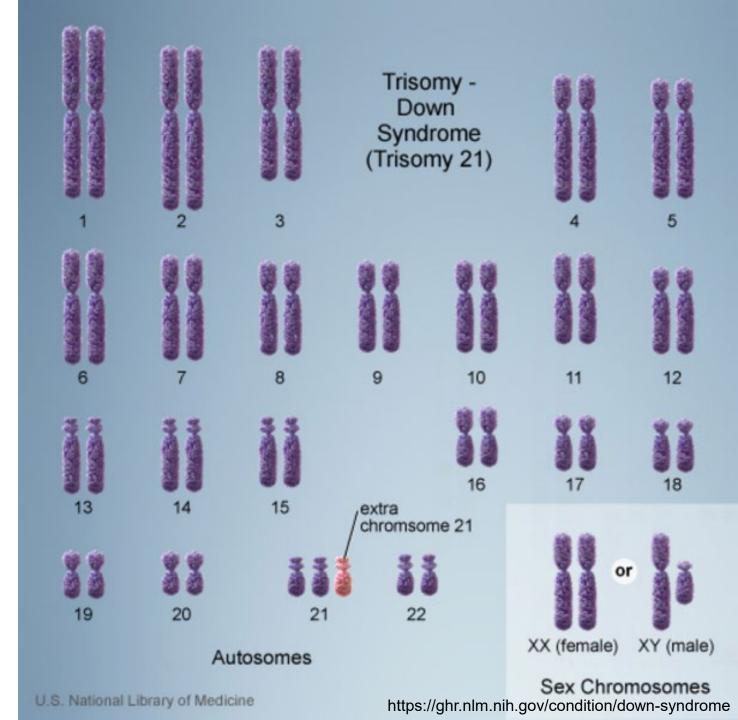
Encephalocele Herniation of the meninges (and brain)

Lethal or severe neurologic damage

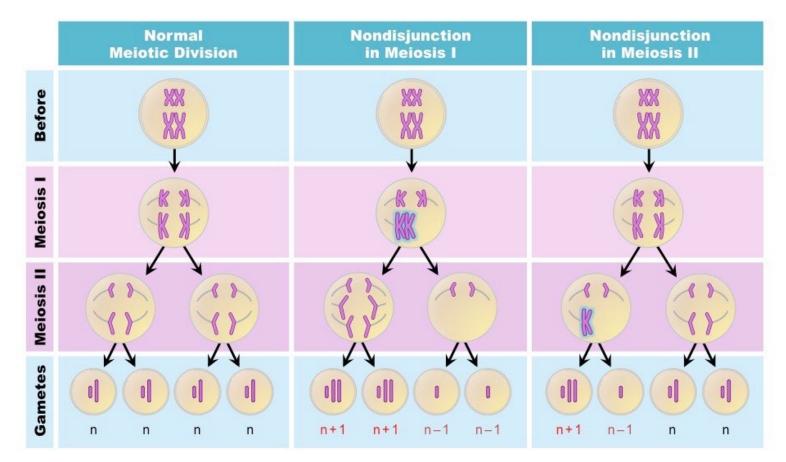
Dukhovny


Inferior ONTD

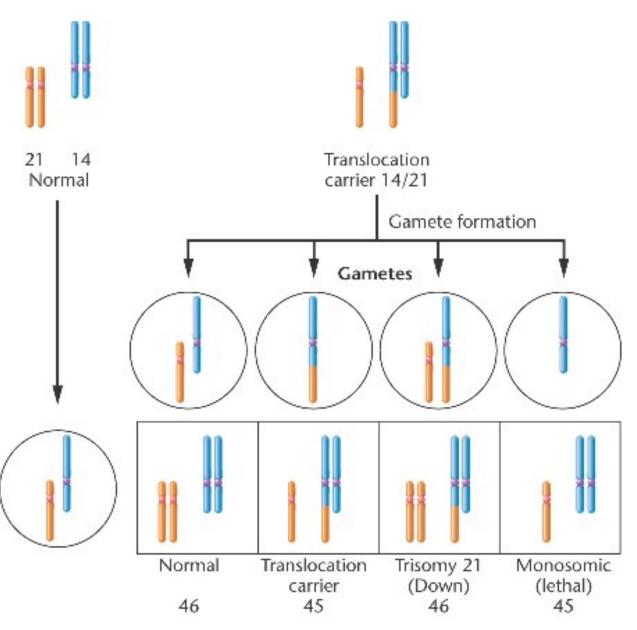
• Prognosis


Bowman

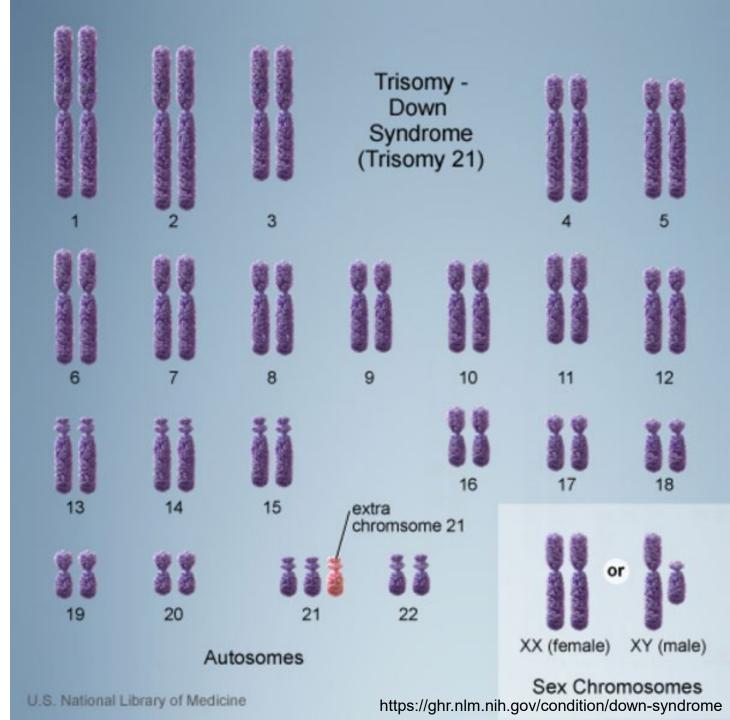
- Ranges from healthy to neurologic damage to death
- More superior = more severe
- Meningomyelocele most severe (25% death rate by adulthood)


Trisomy

- Human cells usually have
 2 copies of each
 chromosome
- Aneuploidy = Different number of chromosomes
- Trisomy = 3 copies of a chromosome


Trisomy Formation

1) Meiotic nondisjunction


Trisomy Formation

- 1) Meiotic nondisjunction
- 2) Robertsonian Translocation

Down Syndrome

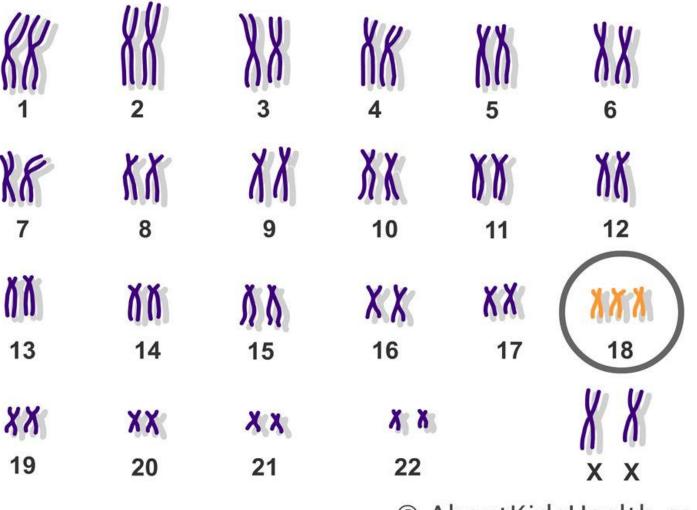
- Pathogenesis: Trisomy 21
- Incidence: ~1 in 800 births
 - Most common chromosomal disorder
- Risk factors:
 - Advanced maternal age
 - Prior aneuploidy pregnancy

Down Syndrome

- Intellectually disability
- Congenital heart defects
- Intestinal blockage issues
- Thyroid diseases
- Diabetes
- Leukemia
- Male infertility
- Immunodeficiencies

Down Syndrome

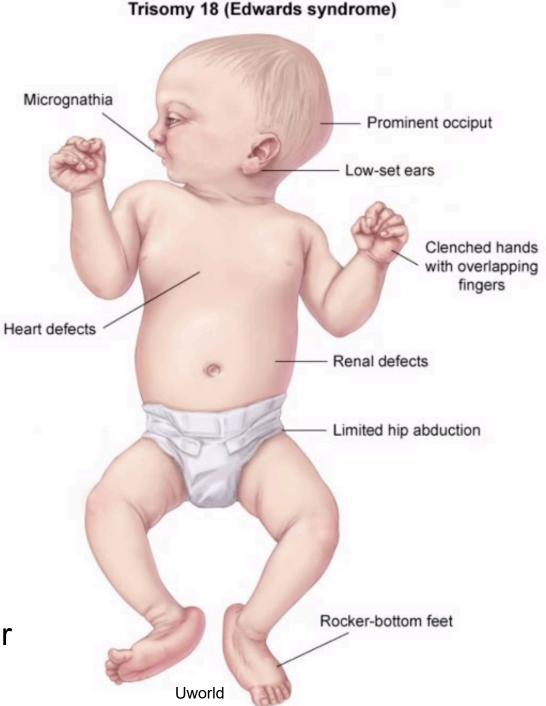
Prognosis:


- Shorter life expectancy: 56.8 years (Sweden)
- Common causes of death
 - Pneumonia/infections
 - Congenital malformations
 - Circulatory disease
 - Dementia

Ostermaier

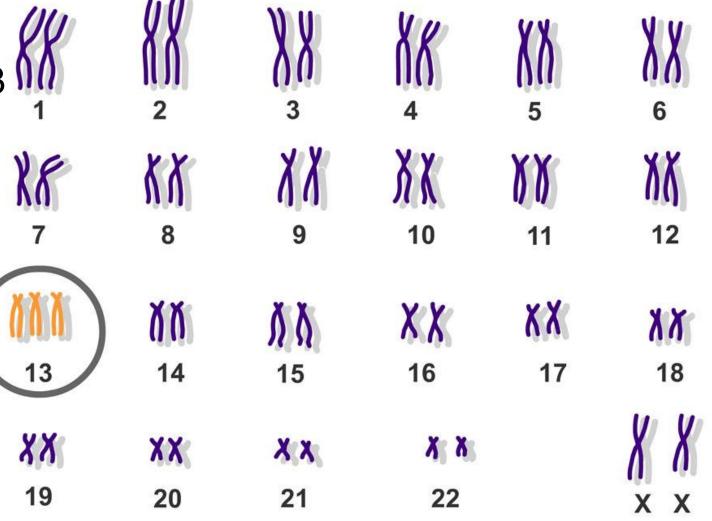
Edwards Syndrome

- Pathogenesis: Trisomy 18
- Incidence: 1 in 8000 births
 - 2nd most common trisomy
- Risk factor:
 - Advanced maternal age


© AboutKidsHealth.ca

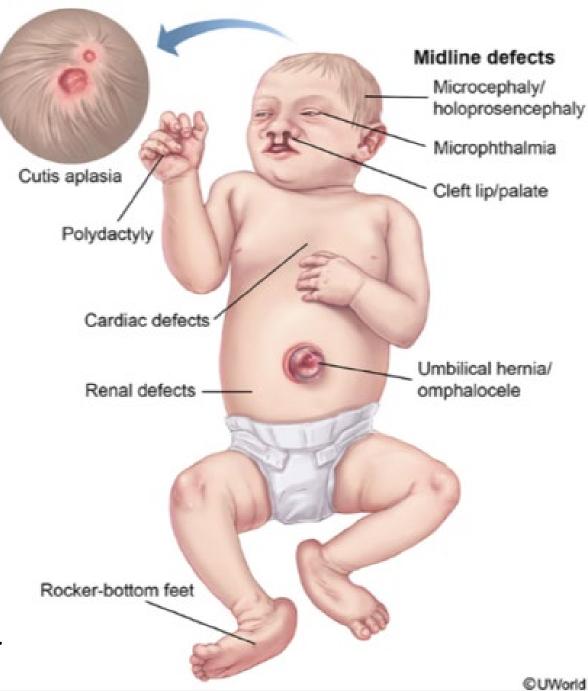
https://www.aboutkidshealth.ca/Article?contentid=875&language=English

Edwards Syndrome


- Prominent occiput
- Rocker-bottom feet
- Intellectual disability
- Nondisjunction
- Clenched fists
- Ears (low set)
- Prognosis:
 - Majority die in uteuro
 - 50% die in 1-2 weeks, 95% die in first year

Messerlian, Giersch ABS, First Aid

Patau Syndrome

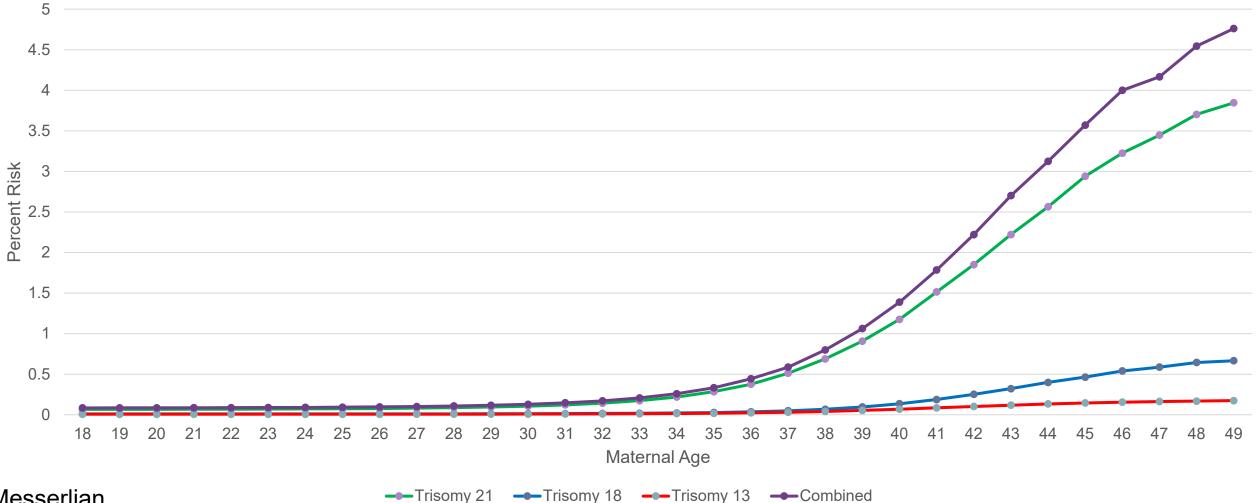

- Pathogenesis: Trisomy 13
- Incidence: 1 in 15,000
- Risk factor:
 - Advanced maternal age

© AboutKidsHealth.ca https://www.aboutkidshealth.ca/Article?contentid=876&language=English

Patau Syndrome

- Intellectual disability
- Holoprosencephaly: Failure of left and right hemispheres to separate
- Congenital heart defects
- Intrauterine growth deficiency
- Prognosis:
 - Majority die in uteuro
 - Median survival of liveborn: 7 days
 - 80% die by 1 month, 91% die by 1 year

Giersch


Trisomy Risk by Maternal Age

Materna

Maternal Age	Trisomy 21 Risk (1:n)	Trisomy 18 Risk (1:n)	Trisomy 13 Risk (1:n)	Combined Trisomy Risk (1:n)
18	1495	9010	13,700	1175
19	1490	8985	13,670	1165
20	1475	8960	13,635	1160
21	1460	8930	13,580	1150
22	1440	8885	13,510	1135
23	1415	8825	13,410	1115
24	1380	8745	13,275	1095
25	1340	8630	13,090	1065
26	1285	8480	12,840	1025
27	1220	8280	12,500	980
28	1140	8010	12,050	920
29	1045	7660	11,470	850
30	935	7215	10,735	770
31	815	6655	9830	675
32	695	5990	8770	580
33	570	5220	7585	480
34	455	4380	6345	385
35	350	3530	5130	300
36	265	2725	4030	225
37	195	2025	3100	170
38	145	1455	2370	125
39	110	1035	1825	94
40	85	735	1430	72
41	66	530	1160	56
42	54	395	970	45
43	45	310	840	37
44	39	250	745	32
45	34	215	685	28
46	31	185	640	25
47	29	170	610	24
48	27	155	590	22
49	26	150	570	21

Messerlian

Trisomy Risk by Maternal Age

Messerlian

Screening Tests and Methodology

What is a screening test?

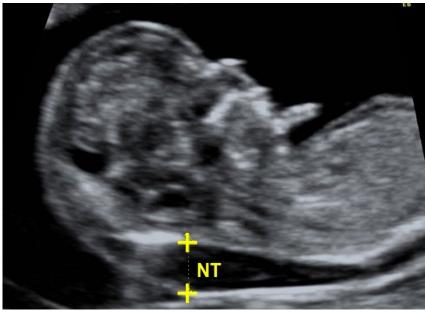
- A screening test identifies those at increased risk of disease
- It does NOT diagnosis a disease
 - Diagnosis requires confirmation testing
- It will result in many false positives
 - Ensures patients with the disease are identified

Overview of Screening Tests

	1 st Trimester Combined Screen	2 nd Trimester Quadruple Screen
Timing	9-14 weeks	15-23 weeks
Analytes	 Nuchal translucency (NT) Pregnancy associated plasma protein A (PAPP-A) Beta human chorionic gonadotropin (β-hCG) 	 Alpha fetoprotein (AFP) Beta human chorionic gonadotropin (β-hCG) Unconjugated estriol (uE₃) Dimeric inhibin A (DIA)

Combining Screening Tests

		Integrated Screen	Contingent Screen
	Method	 Do 1st and 2nd trimester screens Don't release results until both are done 	 Do 1st trimester screen If positive, offer diagnostic testing If high to medium risk, offer 2nd trimester screen If low risk, stop testing
	Pros	Most sensitiveFewer false positives	 Fewer false positives No waiting Can do chorionic villus sampling
	Cons	 Waiting Can't do chorionic villus sampling 	 Slightly less sensitive than integrated screen
Clarke	9		


Analytes and Measurements

Nuchal Translucency (NT)

- Timing: 10w3d to 13w6d (ideal 12-13w)
- Must be done a certified sonographer
- Measure the hypoechoic (dark) space in posterior neck by ultrasound
- Increased thickness (≥3.0 mm)
 = increased aneuploidy risk

Healthy

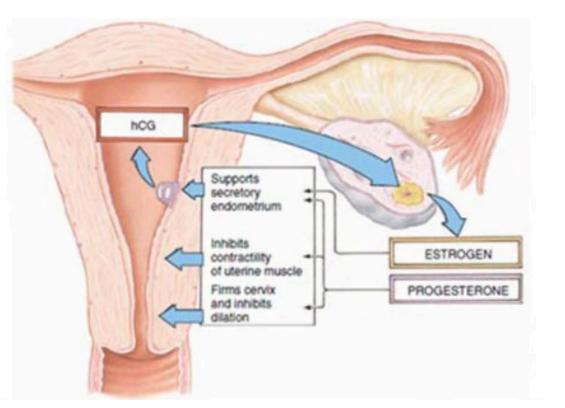
Messerlian, Clarke

Affected

Pregnancy associated plasma protein A (PAPP-A)

- Synthesized by placenta
- Increases with gestational age
- Pregnancy form: Heterotetrametric complex (htPAPP-A)
 - Two PAPP-A subunits
 - Two subunits of eosinophil major base protein (pro-MBP)
- Function: Insulin-like growth factor (IGF) protease
 - IGF is essential for fetal growth

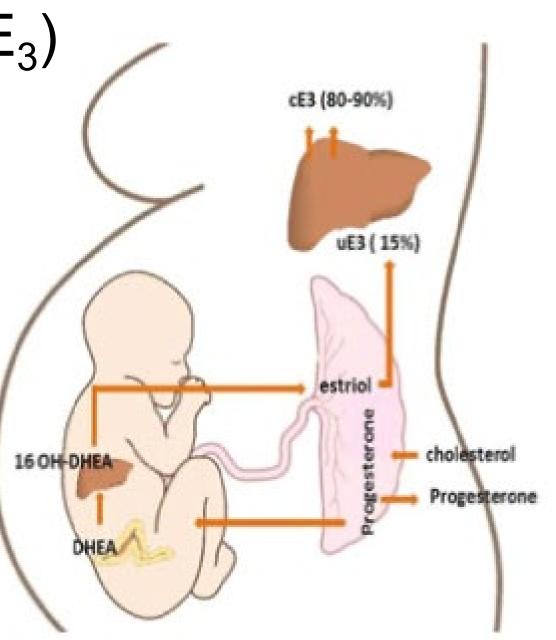
Clarke, Yarbrough


Alpha fetoprotein (AFP)

- Binding protein similar to albumin
- Synthesized by fetal liver and yolk sac
- Peaks at 25w, then gradually declines
- ONTD: AFP in fetal circulation leaks across defect → ↑AFP in amniotic fluid → ↑AFP in maternal serum

Beta human chorionic gonadotropin (β-hCG)

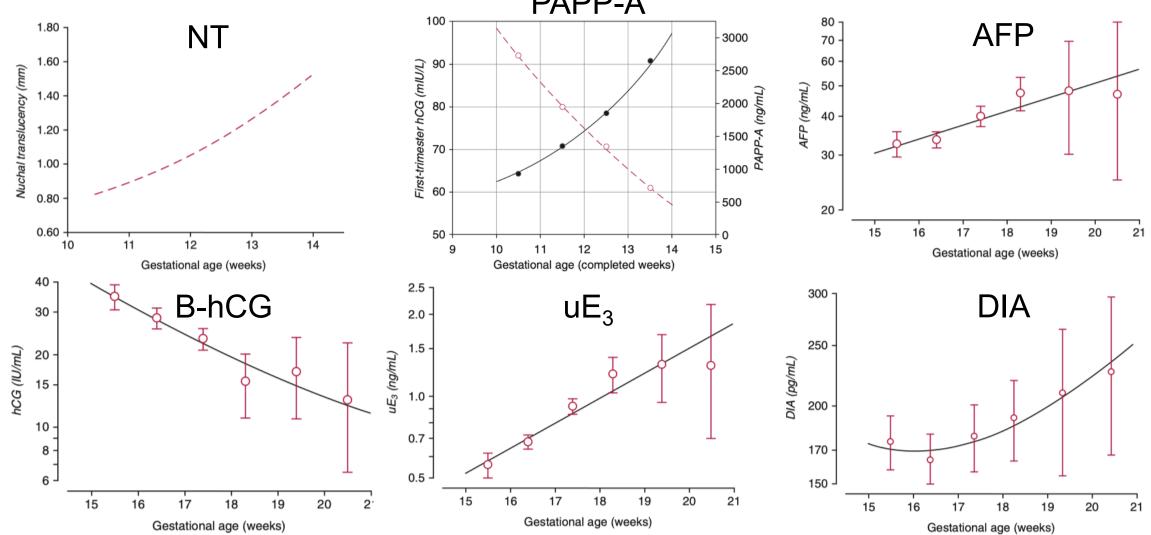
- 2 subunits
 - α: Shared with LH, FSH, TSH, and hCG
 - β: Unique to hCG
- Synthesized by placenta
- Detectable at 1 week, peaks at 8-10 weeks
 - Pregnancy test
- Maintains corpus luteum →
 Estrogen and progesterone


Clarke, Yarbrough, Le

 Also high with multiple gestations, choriocarcinoma, hydatidiform moles, and dysgerminoma

Unconjugated estriol (uE₃)

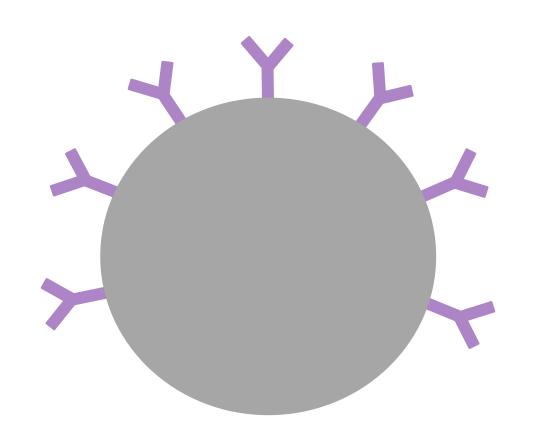
- Synthesized by fetal liver, adrenals, and placenta
 - Half life of 20 minutes before maternal liver conjugates it
- Increases with gestational age



Clarke, Yarbrough

Dimeric inhibin A (DIA)

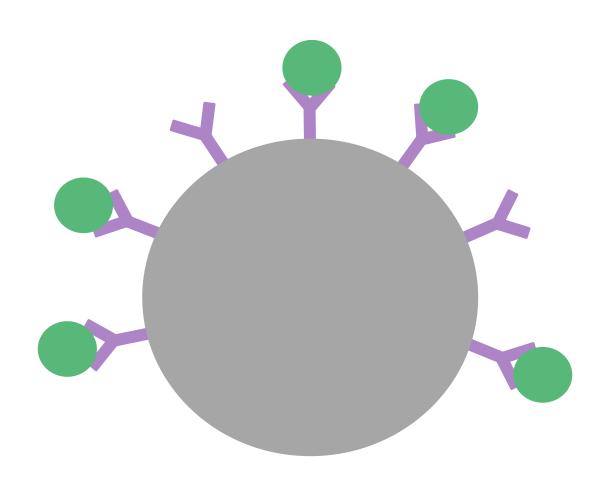
- Dimer
- Synthesized by placenta in pregnancy
- Increases with gestational age
- Inhibits follicle stimulating hormone
- Also increased in ovarian granulosa cell cancer


Analyte Concentrations & Measurments

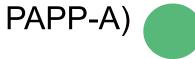
Yarbrough

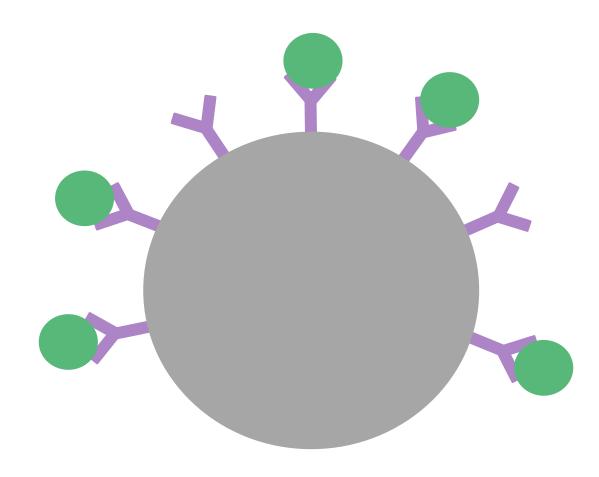
- AFP - β-hCG - DIA

Sandwich IA (Immunoassay) - PAPP-A

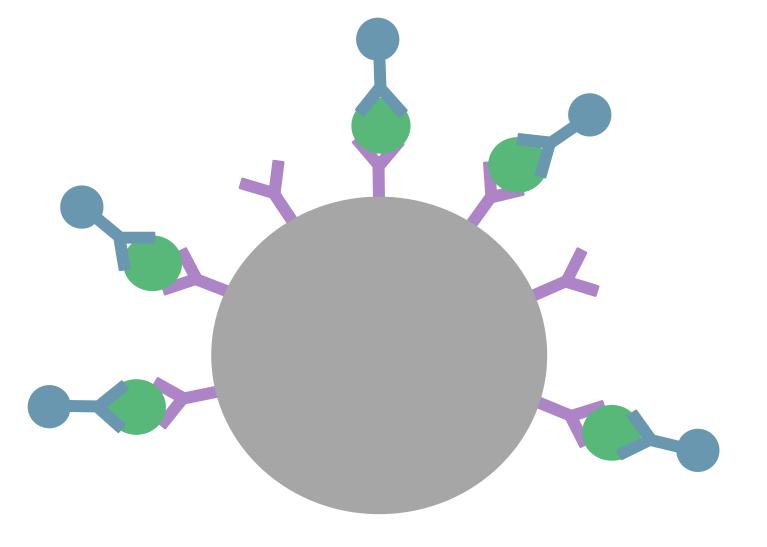


1) Incubate:


 Paramagnetic particles coated with anti-PAPP-A
 antibodies


- 1) Incubate:
 - Paramagnetic particles coated with anti-PAPP-A antibodies
 - Maternal serum (contains

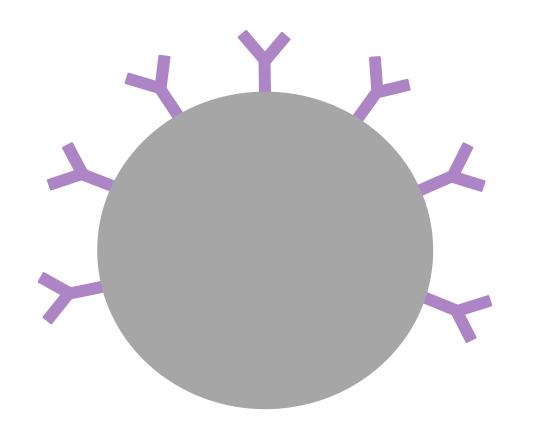
- 1) Incubate:
 - Paramagnetic particles coated with anti-PAPP-A
 antibodies
 - Maternal serum (contains)


2) Wash; particles held by magnetic field

 Add anti-PAPP-A monoclonal antibody – alkaline phosphatase

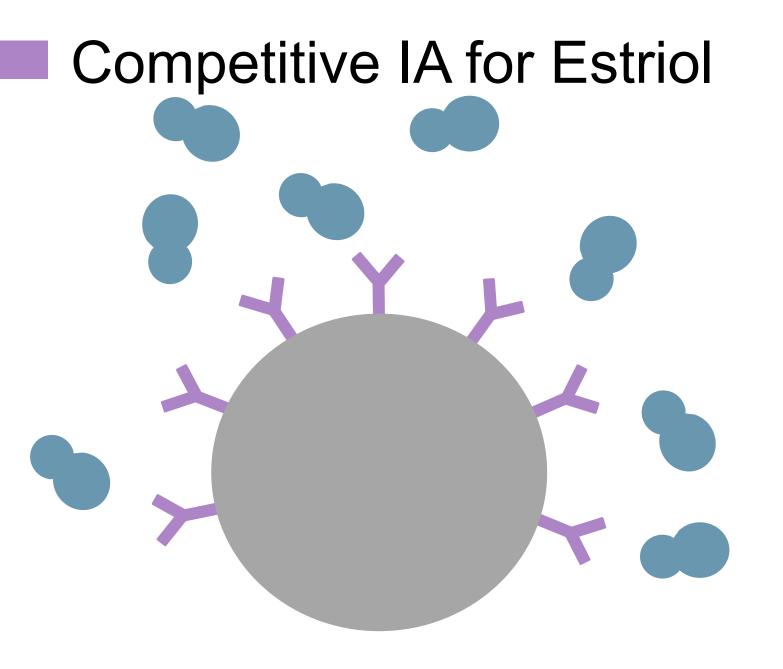
conjugate

 Add anti-PAPP-A monoclonal antibody – alkaline phosphatase conjugate

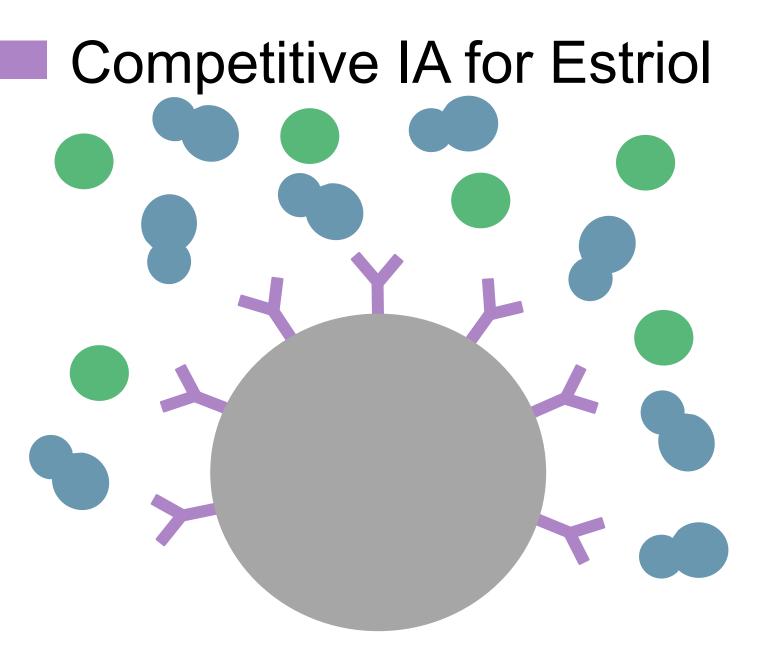

4) Wash

5) Add Lumi-Phos 530 😑

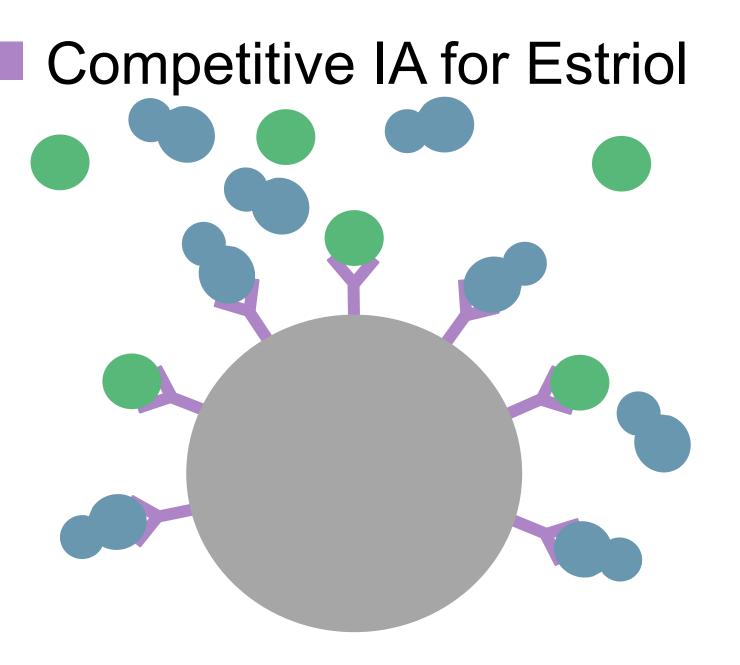
- 5) Add Lumi-Phos 530 😑
- 6) Measure luminescence with luminometer


- Direct correlation:
 ↑ luminescence = ↑PAPP-A
- Quantitate by comparing to calibration curve

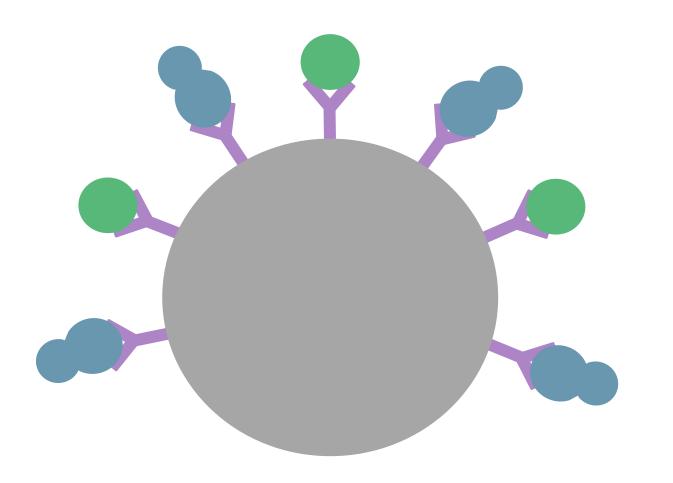
Competitive IA (Immunoassay) - Estriol


1) Incubate:

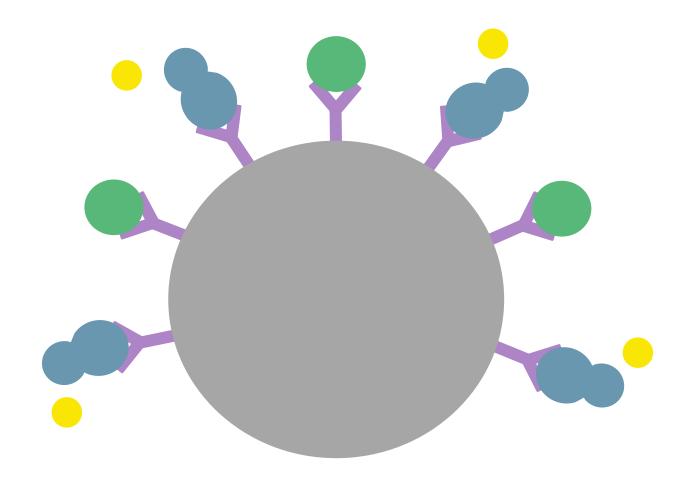
 Paramagnetic particles coated with anti-estriol antibodies


1) Incubate:

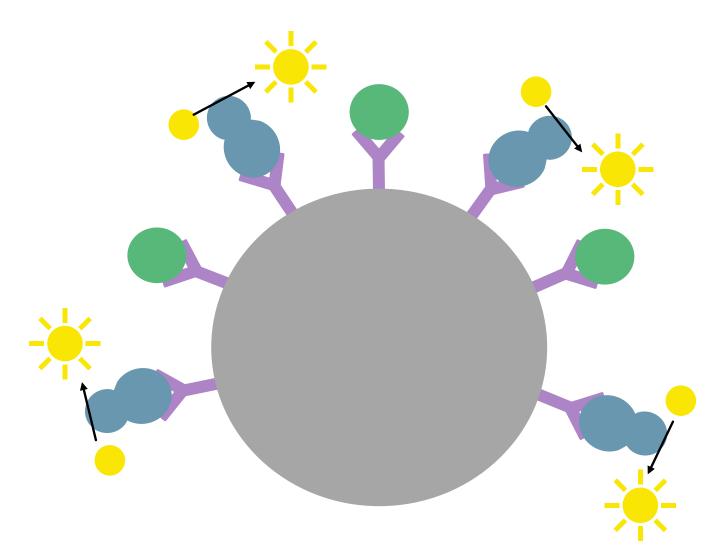
- Paramagnetic particles coated with anti-estriol antibodies
- Estriol-alkaline phosphatase conjugate

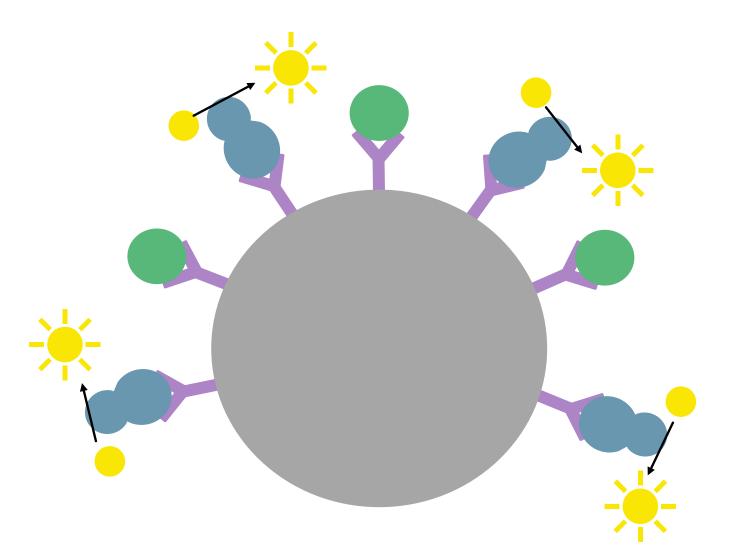

1) Incubate:

- Paramagnetic particles coated with anti-estriol antibodies
- Estriol-alkaline
 phosphatase conjugate
- Maternal serum (contains estriol)

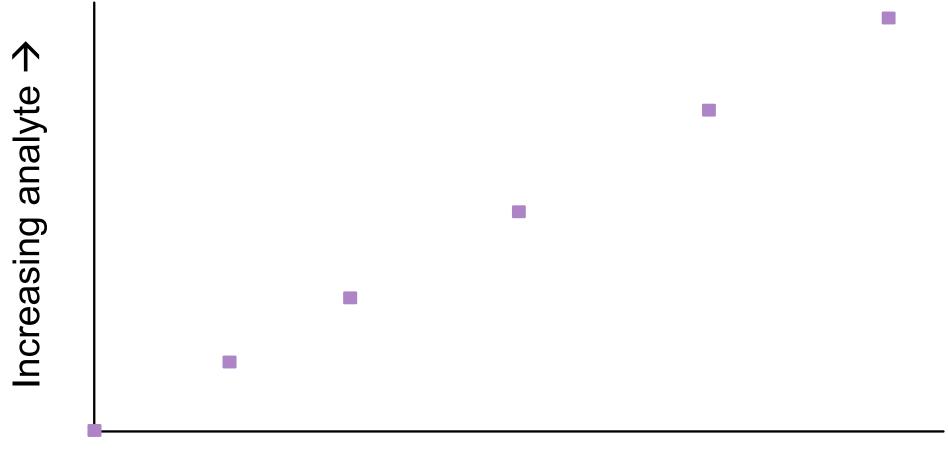


1) Incubate:


- Paramagnetic particles coated with anti-estriol antibodies
- Estriol-alkaline
 phosphatase conjugate
- Maternal serum (contains estriol)


2) Wash

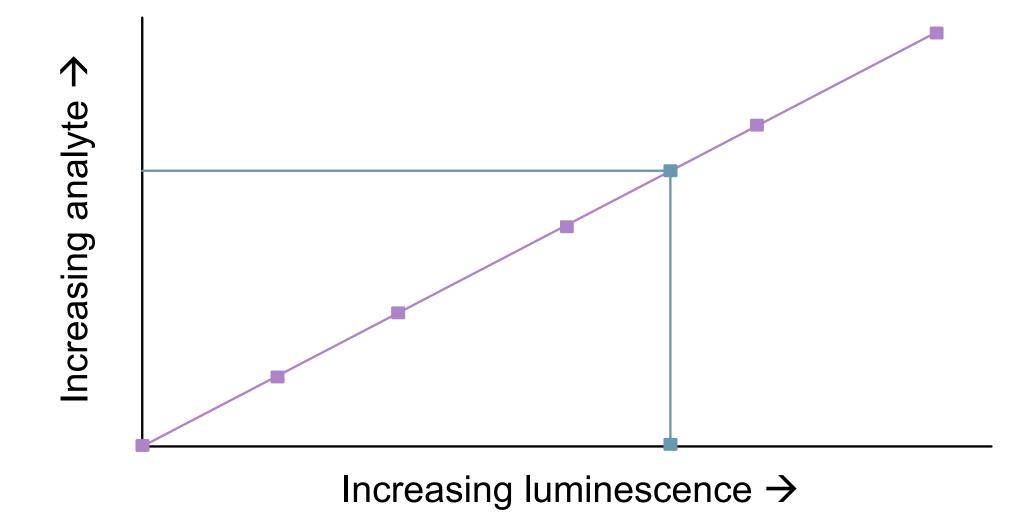
3) Add Lumi-Phos 530 😑


- 3) Add Lumi-Phos 530 😑
- 4) Measure luminescence with luminometer

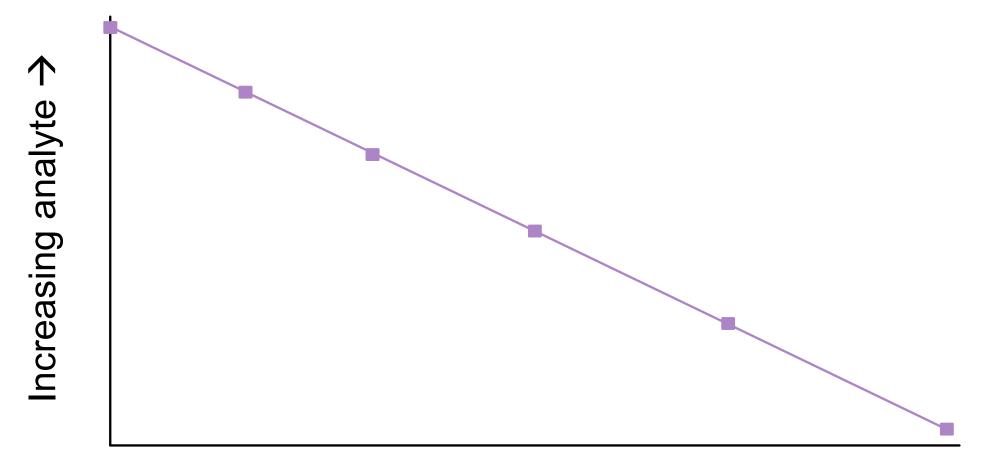
- Indirect correlation:
 ↑ luminescence = ↓ Estriol
- Quantitate by comparing to calibration curve

Calibration Curves

Calibration Curve - Direct


Increasing luminescence \rightarrow

Calibration Curve - Direct



Increasing luminescence \rightarrow

Calibration Curve - Direct

Calibration Curve - Indirect

Increasing luminescence \rightarrow

Interpretation of Results

Multiple of the Median

Multiple of the Median (MoM)

- Analytes differ based on:
 - Gestational age (GA) Included in MoM calculation
 - Maternal weight
 - Race
 - **Diabetes status**
 - Number of fetuses

Adjustment factor after MoM calculation

Multiple of the Median (MoM)

MoM standardizes results by gestational age

$MoM = \frac{Patient's analyte concentration}{Median analyte concentration for GA}$

Patient's analyte concentration	Median analyte concentration	MoM
60	100	

Patient's analyte concentration	Median analyte concentration	MoM
60	100	$\frac{60}{100} = 0.6$

Patient's analyte concentration	Median analyte concentration	MoM
60	100	$\frac{60}{100} = 0.6$
110	100	

Patient's analyte concentration	Median analyte concentration	MoM
60	100	$\frac{60}{100} = 0.6$
110	100	$\frac{110}{100} = 1.1$

Patient's analyte concentration	Median analyte concentration	MoM
60	100	$\frac{60}{100} = 0.6$
110	100	$\frac{110}{100} = 1.1$
110	200	

Patient's analyte concentration	Median analyte concentration	MoM
60	100	$\frac{60}{100} = 0.6$
110	100	$\frac{110}{100} = 1.1$
110	200	$\frac{110}{200} = 0.55$

Wrong Gestational Age?

An incorrect gestational age will throw off MoM calculations

Gestational Age	Patient's analyte concentration	Median analyte concentration	MoM
15w0d	100	100	1

Wrong Gestational Age?

An incorrect gestational age will throw off MoM calculations

Gestational Age	Patient's analyte concentration	Median analyte concentration	MoM
15w0d	100	100	1
18w0d	100	300	0.33

Disease Interpretation

Disease Interpretation

1 st Trimester	NT	PAPP-A	β-hCG
Trisomy 21	1	\downarrow	\uparrow
Trisomy 18	\uparrow	\downarrow	\downarrow
Trisomy 13	1	\downarrow	\downarrow

2 nd Trimester	AFP	β-hCG	Estriol	Inhibin A
ONTD	1	-	-	-
Trisomy 21	\downarrow	1	\downarrow	1
Trisomy 18	\downarrow	\downarrow	\downarrow	- / ↓*

Clarke, Messerlian, Baldwin

*Not included in risk calculation

Relative Risk for Trisomies

Relative Risk for Trisomies

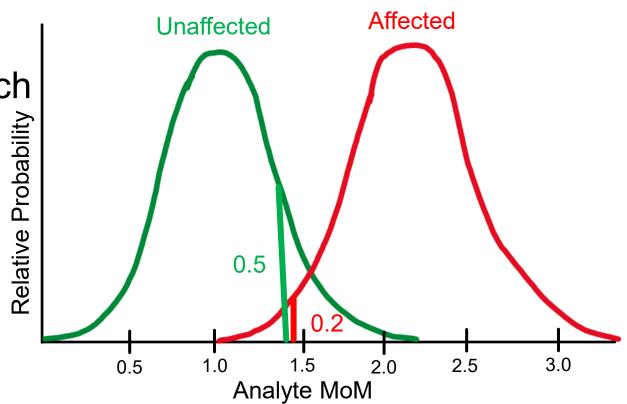
- Report a relative risk for each trisomy
- Calculated using population statistics

Relative Risk for Trisomies

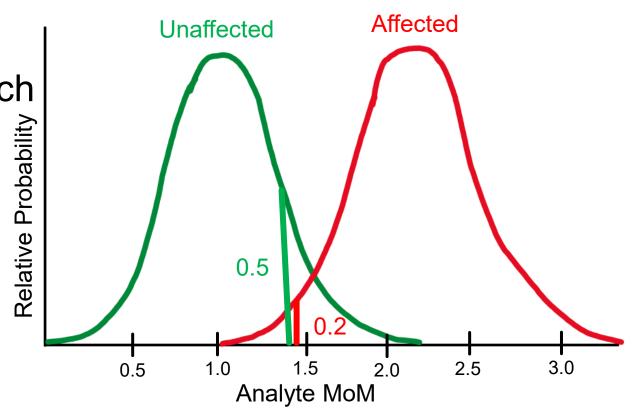
1) Pre-test odds (maternal age chart)

Trisomy Risk by Maternal Age

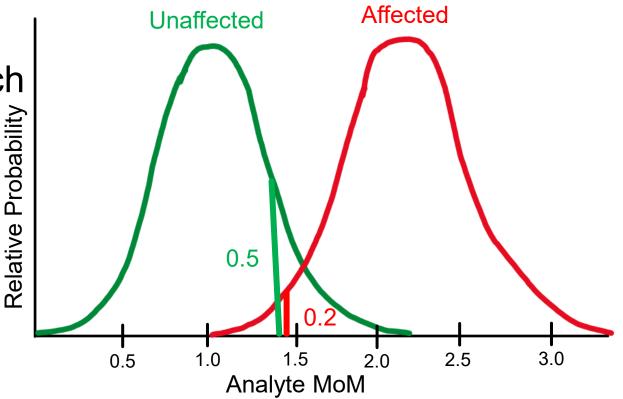
Maternal Age	Trisomy 21 Risk (1:n)	Trisomy 18 Risk (1:n)	Trisomy 13 Risk (1:n)	Combined Trisomy Risk (1:n)
18	1495	9010	13,700	1175
19	1490	8985	13,670	1165
20	1475	8960	13,635	1160
21	1460	8930	13,580	1150
22	1440	8885	13,510	1135
23	1415	8825	13,410	1115
24	1380	8745	13,275	1095
25	1340	8630	13,090	1065
26	1285	8480	12,840	1025
27	1220	8280	12,500	980
28	1140	8010	12,050	920
29	1045	7660	11,470	850
30	935	7215	10,735	770
31	815	6655	9830	675
32	695	5990	8770	580
33	570	5220	7585	480
34	455	4380	6345	385
35	350	3530	5130	300
36	265	2725	4030	225
37	195	2025	3100	170
38	145	1455	2370	125
39	110	1035	1825	94
40	85	735	1430	72
41	66	530	1160	56
42	54	395	970	45
43	45	310	840	37
44	39	250	745	32
45	34	215	685	28
46	31	185	640	25
47	29	170	610	24
48	27	155	590	22
49	26	150	570	21


1) Pre-test odds (1 in 935)

2) Calculate MoM (1.4)


- 1) Pre-test odds (1 in 935)
- 2) Calculate MoM (1.4)
- Calculate likelihood ratio for each analyte using the MoM

LR = Probility of affected Probability of unaffected


• LR =
$$\frac{0.2}{0.5} = 0.4$$

- 1) Pre-test odds (1 in 935)
- 2) Calculate MoM (1.4)
- Calculate likelihood ratio for each analyte using the MoM
 - For multiple analytes, multiply the LR of each together
 - Ex: 0.4 x 1.9 x 2.3 x 3.5 = 6.1

- 1) Pre-test odds (1 in 935)
- 2) Calculate MoM (1.4)
- 4) RR = Pre-test odds x LR

Relative Risk Cutoff

- At what point is the relative risk "positive?"
- Often the risk of Down Syndrome for a 35-year-old is used as the cutoff (1:270)
- May raise or lower the cutoff to customize testing

Test Performance

Detection Rates for ONTD

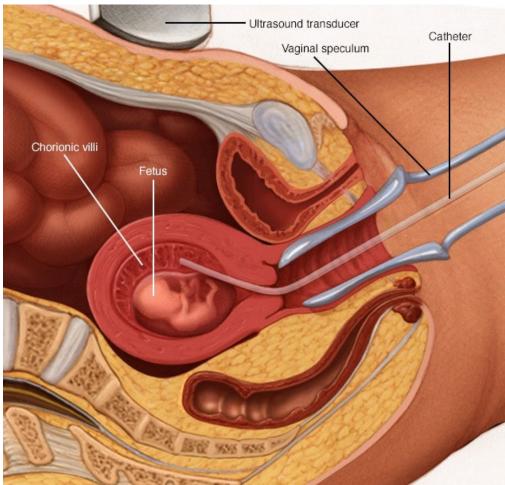
Testing for	Sensitivity
ONTD	95%
Anencephaly	97%
Open spina bifida	99%
Abdominal wall defects	40-79%

Detection Rates for Down Syndrome

Test	Detection Rate	False Positive Rate	T21 Cutoff
Combined (1 st)	85%	6%	1/230
Quad (2 nd)	81%	4-5%	1/150
Integrated	87%	1.0%	1/110
Contingent	63% (1 st) 23% (2 nd) 86% (Total)	0.6% (1 st) 1.0% (2 nd) 1.6% (Total)	1/25 (1 st) 1/110 (2 nd)

Baldwin

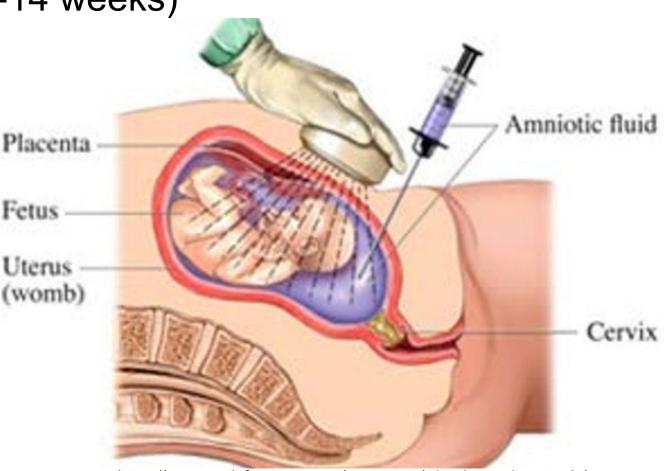
Positive Predictive Value (Down Syndrome)


- Positive predictive values at 85% detection rate
- Good screening test

Integrated	17%
Combined (1 st)	3%
Quad (2 nd)	3%

What Next?

Trisomy Confirmation


- Chorionic villus sampling (10-14 weeks)
 - Chromosomal analysis
 - Fetal loss rate up to 2%

https://www.mayoclinic.org/tests-procedures/chorionic-villus-sampling/about/pac-20393533

Trisomy Confirmation

- Chorionic villus sampling (10-14 weeks)
 - Chromosomal analysis
 - Fetal loss rate up to 2%
- Amniocentesis (>15 weeks)
 - Chromosomal analysis
 - Fetal loss rate up to 1%

https://www.madeformums.com/pregnancy/what-is-amniocentesis/

ONTD Confirmation

- Ultrasound to confirm GA and look for abnormalities
- Amniocentesis
 - Measure AFP
 - If high, also measure acetylcholinesterase (AChE)
 - If high, ONTD confirmed
 - Chromosomal analysis
 - Increased risk of chromosomal abnormalities

One More Option

Non-invasive Prenatal Testing (NIPT)

- Introduced in 2011
- Offered to all pregnant women, not just high-risk patients
 - Option for those who screen positive on 1st or 2nd trimester screen, but don't want to do invasive testing
- Detects fetal cell free DNA (cfDNA) in maternal blood
 - Rises with gestational age
 - ~11-13% of cfDNA is fetal at 1st to 2nd trimester transition
- Each chromosome makes up a certain percentage of cfDNA
 - Chromosome percentage increased = trisomy

Palomaki, Grenache, Norton

Non-invasive Prenatal Testing (NIPT)

	Detection Rate	False Positive Rate	Positive Predictive Value	Negative Predictive Value
Trisomy 21	99.5%	0.05%	85%	>99.9%
Trisomy 18	97.7%	0.04%	69%	>99.9%
Trisomy 13	96.1%	0.06%	33%	>99.9%

- High detection rate
- Low false positive rate
- Decent positive predictive value = screening test only
- High negative predictive value

Palomaki, Grenache

Non-invasive Prenatal Testing (NIPT)

- Why not replace serum screening with NIPT?
 - Cost
 - Insurance coverage
 - Availability
 - Can't detect ONTD
- Ultimately, which (if any) screening test to do is a personal decision

Conclusion

Conclusion

- Prenatal screening detects:
 - Open neural tube defects
 - Trisomy 21
 - Trisomy 18
 - Trisomy 13
- Screening tests:
 - Combined screen (1st): NT, PAPP-A, β-hCG
 - Quad screen (2^{nd}): AFP, β -hCG, uE₃, DIA
 - Non-invasive prenatal testing

Conclusion

- Result reporting
 - Multiple of the Median (MoM)
 - Relative risk
- Confirmation testing
 - Chorionic villus sampling (10-14w)
 - Amniocentesis (>15w)

References

- Baldwin E, Genzen JR, LaGrave D, Lamb AN, Mao R. Prenatal Screening and Diagnosis for Chromosomal Abnormalities and Neural Tube Defects. ARUPConsult.com. Accessed Aug 17, 2020.
- Bowman RM. Myelomeningocele (spina bifida): Management and outcome. *UpToDate*. Updated Feb 27, 2020. Accessed Aug 13, 2020.
- Dukhovny S, Wilkin-Haug L. Open neural tube defects: Risk factors, prenatal screening and diagnosis, and pregnancy management. UpToDate. Updated Jun 8, 2020. Accessed Aug 13, 2020.
- Le T, Bhshan V, Sochat M, Chavda Y. *First Aid.* McGraw-Hill Education eBooks; 2017.
- Giersch ABS. Congenital cytogenetic abnormalities. *UpToDate*. Updated Sep 27, 2019. Accessed Aug 13, 2020.
- Ghidini, A. Chorionic villus sampling. *UpToDate*. Updated Apr 14, 2020. Accessed Aug 17, 2020.
- Ghidini, A. Diagnostic amniocentesis. UpToDate. Updated Oct 10, 2019. Accessed Aug 17, 2020.
- Grenache D. Prenatal Screening for Fetal Defects. AACC.org. Apr 19, 2013.
- Messerlian GM, Palmaki GE. Down syndrome: Overview of prenatal screening. *UpToDate*. Updated Jun 23, 2020. Accessed Aug 13, 2020.
- Messerlian GM, Farina A, Palomaki GE. First-trimester combined test and integrated tests for screening for Down syndrome and trisomy 18. UpToDate. Updated Oct 17, 2019. Accessed Aug 13, 2020.
- Norton, et al. Cell-free DNA Analysis for Noninvasive Examination of Trisomy. *NEJM*. 2015; 372:1589-1597.
- Ostermaier, KK. Down syndrome: Clinical features and diagnosis. *UpToDate*. Updated Mar 18, 2019. Accessed Aug 13, 2020.
- Ostermaier, KK. Down syndrome: Management. UpToDate. Updated Mar 27, 2019. Accessed Aug 13, 2020.
- Palomaki GE, Messerlian GM, Halliday JV. Prenatal screening for common aneuplodies using cell-free DNA. *UpToDate*. Updated Jun 30, 2020. Accessed Aug 17, 2020.
- Wald NJ, Rodeck C, Hackshaw AK, Walters J, Chitty L, Mackinson AM. First and second trimester antenatal screening for Down's syndrome: the results of the Serum, Urine and Ultrasound Screening Study. J Med Screen. 2003;10(2):56-104.
- Williams J, Mai CT, Mulinare J, et al. Updated estimates of neural tube defects prevented by mandatory folic Acid fortification United States, 1995-2011. MMWR Morb Mortal Wkly Rep. 2015;64(1):1-5.
- Yarbrough ML, Stout M, Gronowski AM. Pregnancy and Its Disorders. In: Rifai N, Horvath AR, Wittwer CT. *Tietz Textbook of Clinical Chemistry and Molecular Diagnostics, 6th ed.* St Louis, Missouri: Elsevier; 2012. 1655-1696.