

Having a Blast? Acute Leukemia and Beyond

Olga Pozdnyakova, MD, PhD Associate Professor of Pathology, Harvard Medical School Medical Director, BWH Hematology and Specialty Labs Diagnostic Pathologist, Brigham and Women's Hospital Dana-Farber Cancer Institute

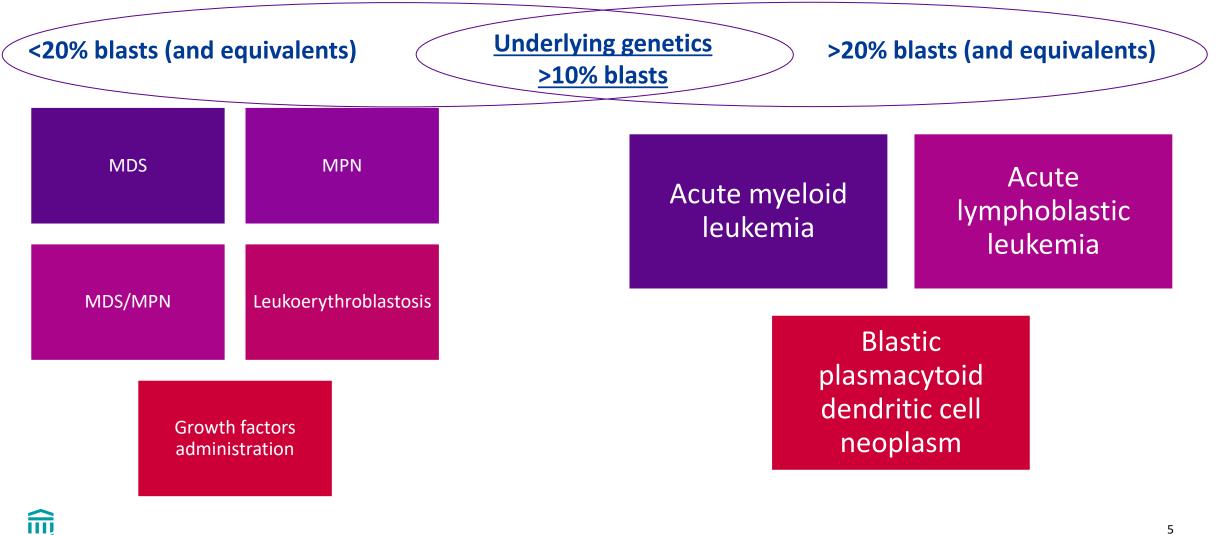
February 6, 2023

Objectives

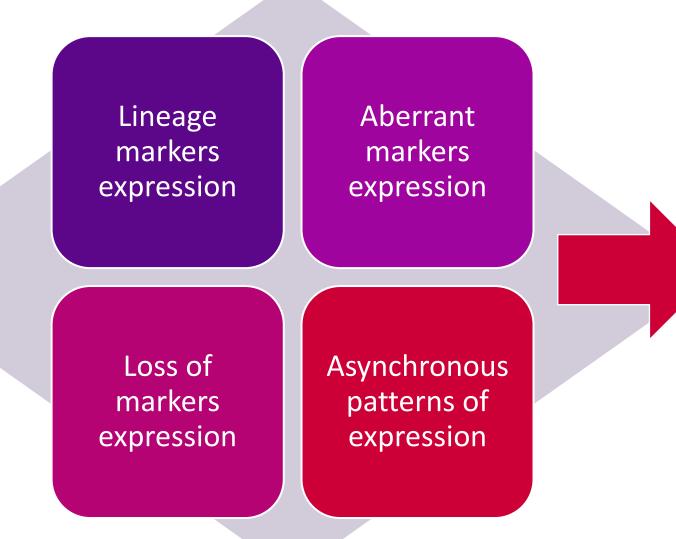
Recognize blood and/or bone marrow smears with increased blasts and identify important morphologic clues.


Appropriately apply and interpret pertinent ancillary methods to cases presenting with increased blasts.

Understand the diagnostic and prognostic significance of ancillary testing.

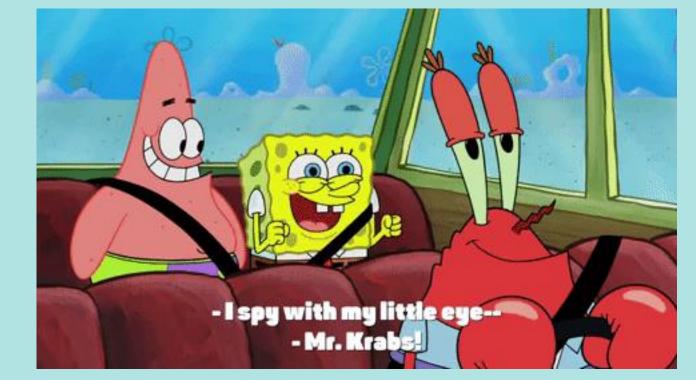


Blasts do NOT read pathology books!



Private Informat

Differential diagnosis for blood or marrow specimens with increased blasts


Immunophenotype is essential !!!

Blast population:

- Cell lineage (quantity)
- Underlying genetic abnormalities
- Antigen expression for targeted therapies
- Make (preliminary) diagnosis

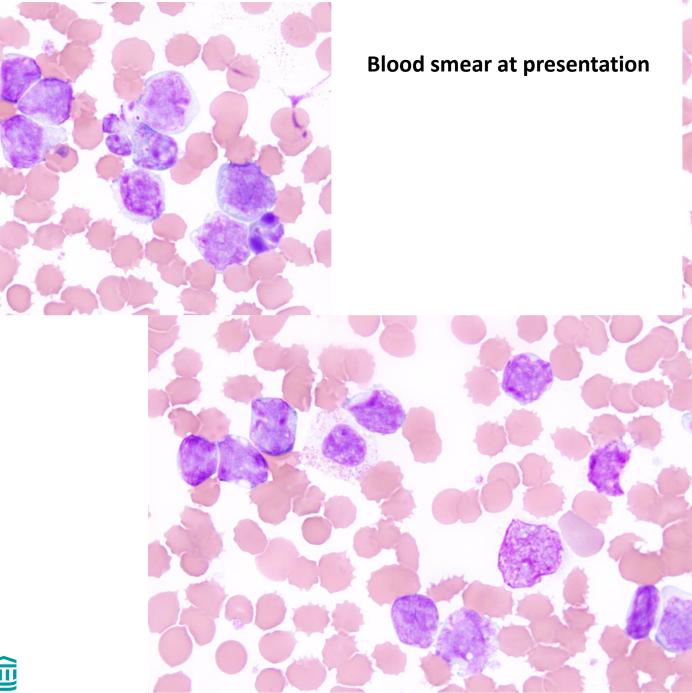
Case 1. I spy with my little eye ...

62-year-old patient with unremarkable medical history is presenting with atypical lymphocytosis

Complaints:

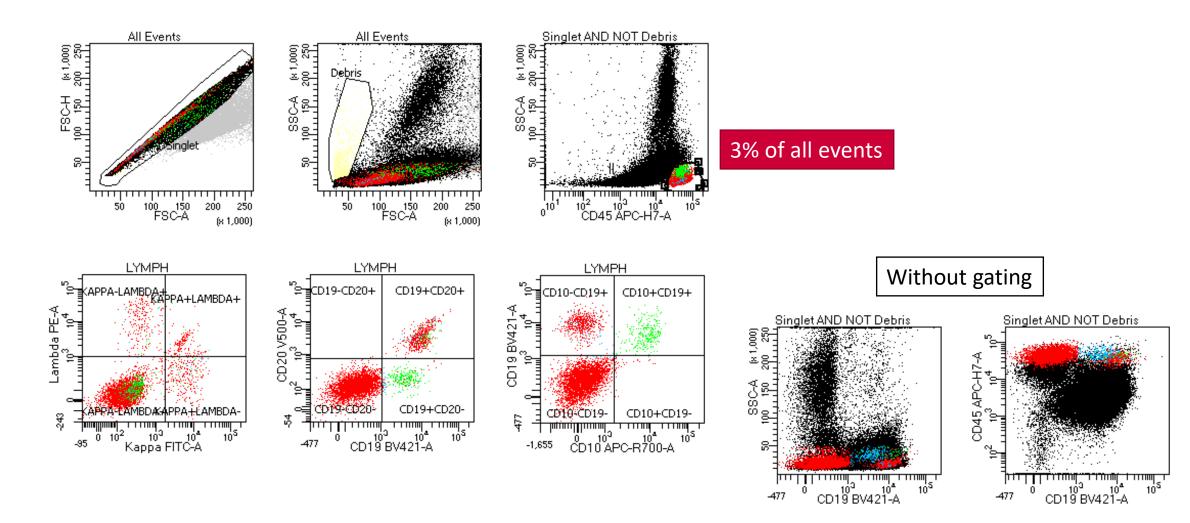
Fatigue, feeling "run down"

PMH:

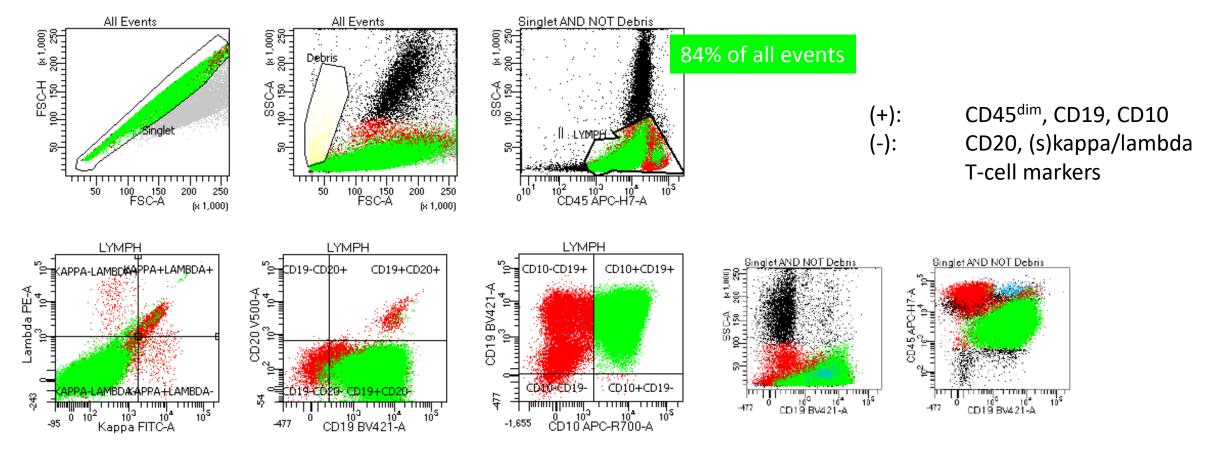

Unremarkable

ROS:

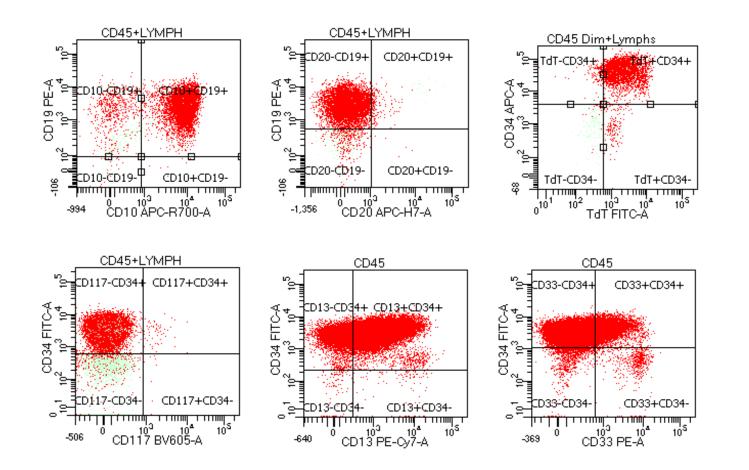
Unremarkable


The abnormal population = 77%

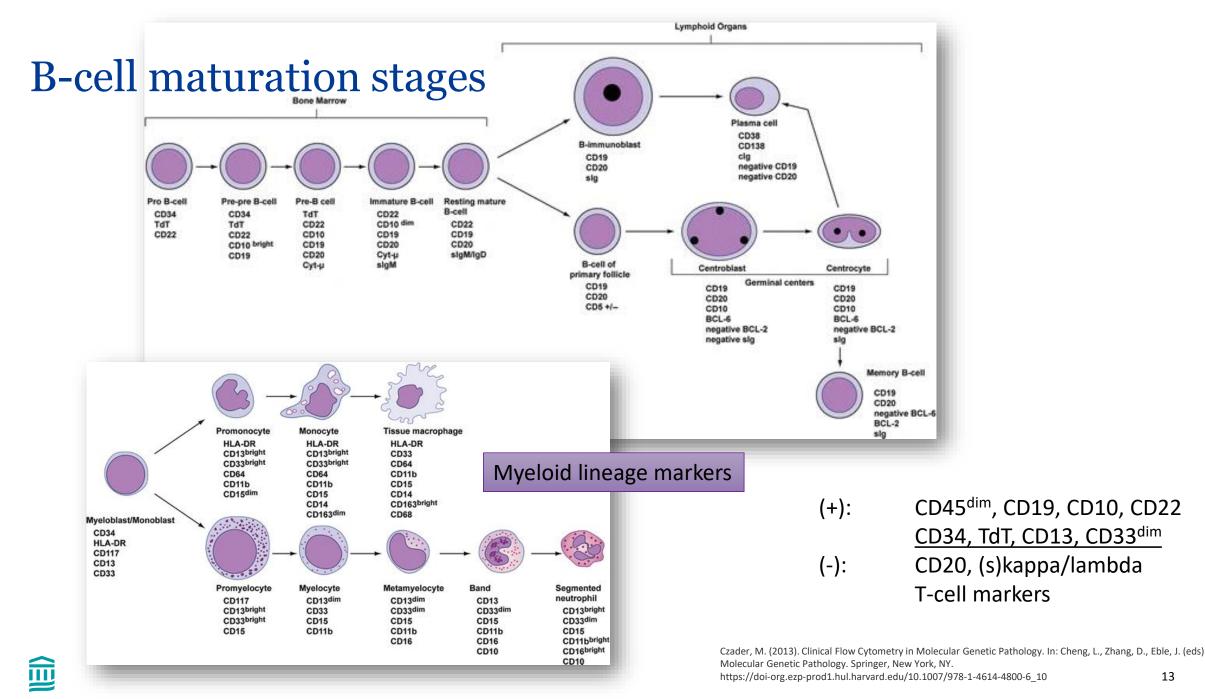
Parameters	Result	Reference range
WBC	222.22 (HH)	4.00 - 10.90 K/μL
- Neutrophils	8.89 (H)	1.92 - 7.60 K/μL
- Lymphocytes	171.11 (HH)	0.72 - 4.10 K/μL
- Monocytes	6.67 (H)	0.16 - 1.10 K/μL
Hgb	12.9	11.5 - 16.4 g/dL
НСТ	40.3	36.0 - 48.0 %
MCV	93.1	80.0 - 100.0 fL
PLT	176	150 - 450 K/K/μL


Private Information

Lymphoma panel "typical" lymphocyte gate ($CD45^{br} + SSC^{low}$)



Private Information


Lymphoma panel – expand the lymphocyte gate CD45 (dim + bright)

Leukemia panel

(-):

Private Information

13

Other results

Cytogenetics

• 46,XX,t(9;22)(q34;q11.2)[20]

Molecular

- BCR::ABL1 (p190, e1a2) >50% BCR-ABL1/ABL1 (above limit of quantification)
- BCR::ABL1 (p210): NOT Detected (adequate control gene)
- 1 copy deletion IKZF1 (on 7p) (exons 5-7)

Diagnosis

• B-ALL with t(9;22)/BCR::ABL1

14

Typical B-lymphoblast phenotype: Positive: CD19, CD10, CD22, CD20+/-, CD34, TdT Negative: sIg, myeloid markers

B-ALL with	Frequency	Prognosis	Phenotype
t(9;22)(q34.1;q11.2)/BCR::ABL1	25% adults, 2-4% AYA	Poor	myeloid markers, CD25
t(v;11q23.3)/KMT2A rearranged	Most common <1 yo	Poor	CD10-, CD15+
t(12;21)(p13.2;q22.1)/ETV6::RUNX1	25% AYA	Good	myeloid markers, CD9-, CD20-
t(1;19)(q23.3;p13.3)/TCF3::PBX1	6% AYA	Variable	(c)mu+, CD9+, CD34-
BCR::ABL1-like	10-25% adults	Variable	myeloid markers, CRLF2+
MYC rearrangement	2-5%	Poor	CD34-, slg+/-
DUX4 rearrangement	5-10%	Favorable	CD371+, CD2+
MEF2D rearrangement	3-5%	Poor	CD10dim/-, (c)mu+
ZNF384(362) rearrangement	5-10%	Variable	CD10dim/-, myeloid markers
NUTM1 rearrangement	<2%, mostly in infants lacking <i>KMT2A</i> rearrangement	Good	CD10dim/-, myeloid markers

BCR::ABL1-like B-ALL

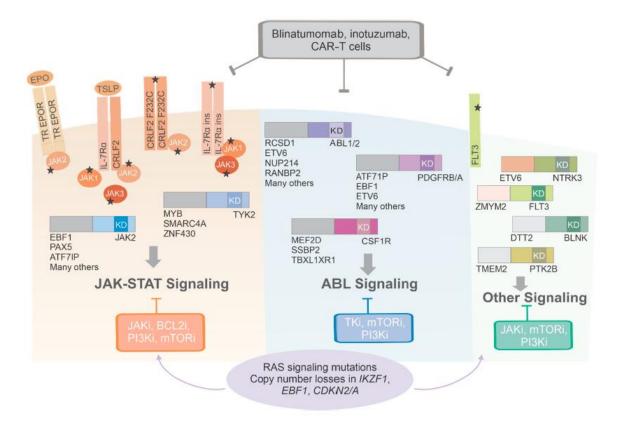
Gene expression profiling identifies a subset of B-ALL cases with similar gene expression profile to *BCR::ABL1*+ B-ALL

• Share IKZF deletion with BCR::ABL1+ B-ALL

10% of pediatric, up to 25% of adult B-ALL

Altered ABL/JAK pathway signaling

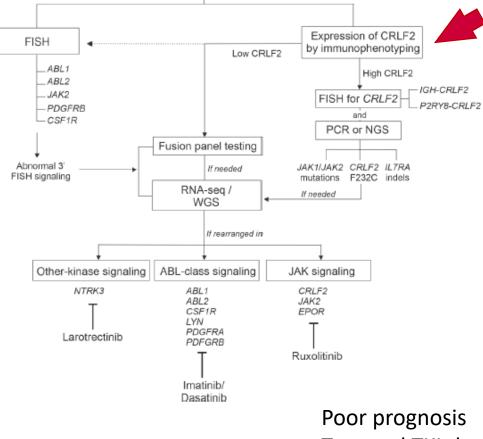
- Often have rearrangements of tyrosine kinase or cytokine genes
- Can respond to appropriate targeted therapies


Poorer prognosis than other *BCR::ABL1* negative B-ALLs

Owattanapanich W et al. Clin Lymph Myel Leuk 2020

Private Information

Schematic representation of main genomic alterations in Phlike B-ALL

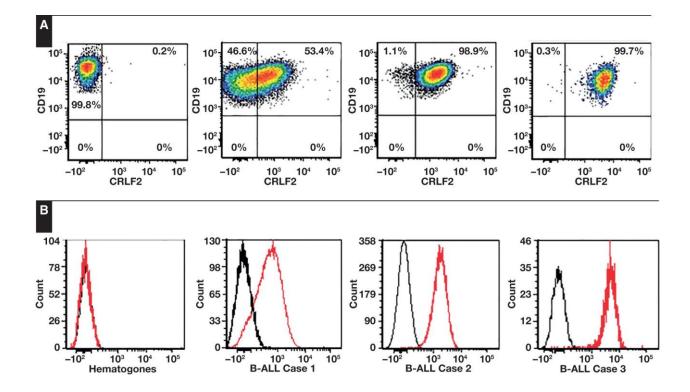

>60 genetic alterations (many cryptic) Three main types:

1. JAK/STAT alterations including mutations activating cytokine receptors (e.g., CRLF2 and IL7R); gene fusions hijacking cytokine receptor expression (e.g., IGH-CRLF2 and P2RY8–CRLF2); gene fusions and/or mutations activating kinases (e.g., JAK1, JAK2, JAK3, TYK2); rearrangements hijacking and truncating cytokine receptor expression (e.g., cryptic EPOR rearrangements)

2. Fusions involving *ABL*-class genes (*ABL1, ABL2, CSF1R, LYN, PDGFRA, PDGFRB*)

3. Less common fusions (*FLT3, FGFR1, NTRK3, PTK2B*); number is growing with increasing sequencing studies of different cohorts

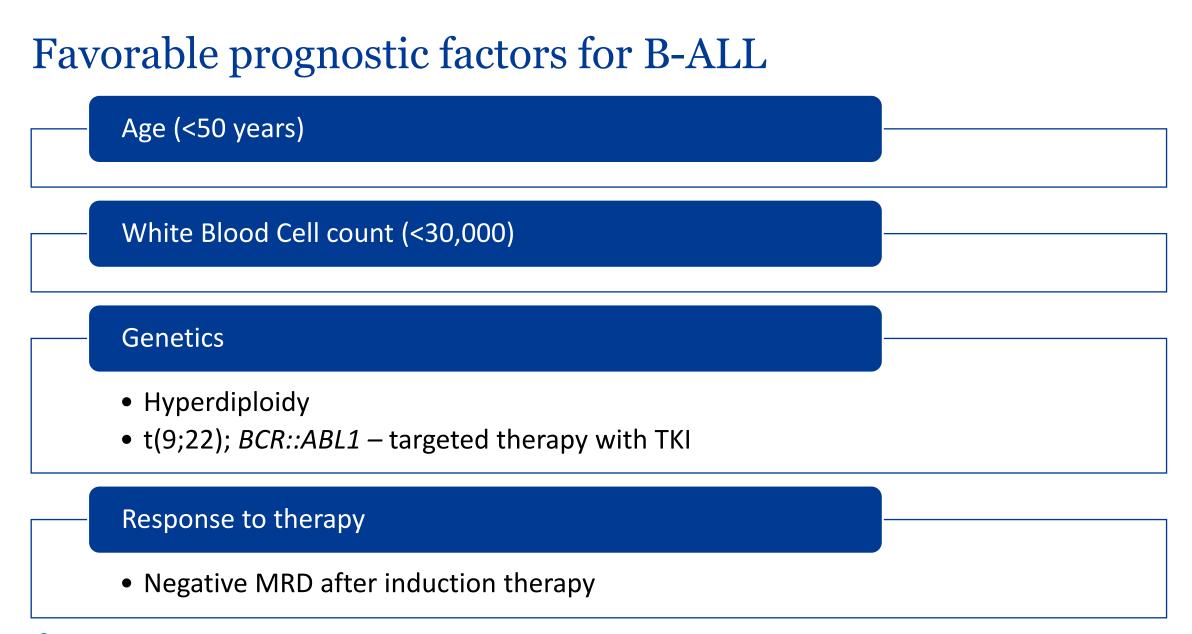
Diagnostic approach to detect Ph-like B-ALL



BCR::ABL1 or other translocations are not detected

Starts with flow cytometry for CRLF2 overexpression Cytokine receptor like factor 2 Cost-effective and predictive of CRLF2 rearrangements (~50% of cases) -FISH Fusion panels Clinical RNA-seq is the "gold standard" but the slowest, most expensive and intensive with regards to analyses

Poor prognosis Targeted TKI therapies


CRLF2 flow cytometry detects B-ALL cases with CRLF2 rearrangements

- Absent in normal precursor B cells (hematogones)
- Levels of CRLF2 expression B-ALL can vary from dim to moderate to bright

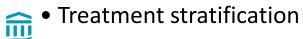
Am J Clin Pathol, Volume 147, Issue 4, April 2017, Pages 357–363, https://doi.org/10.1093/ajcp/aqx005

The content of this slide may be subject to copyright: please see the slide notes for details.

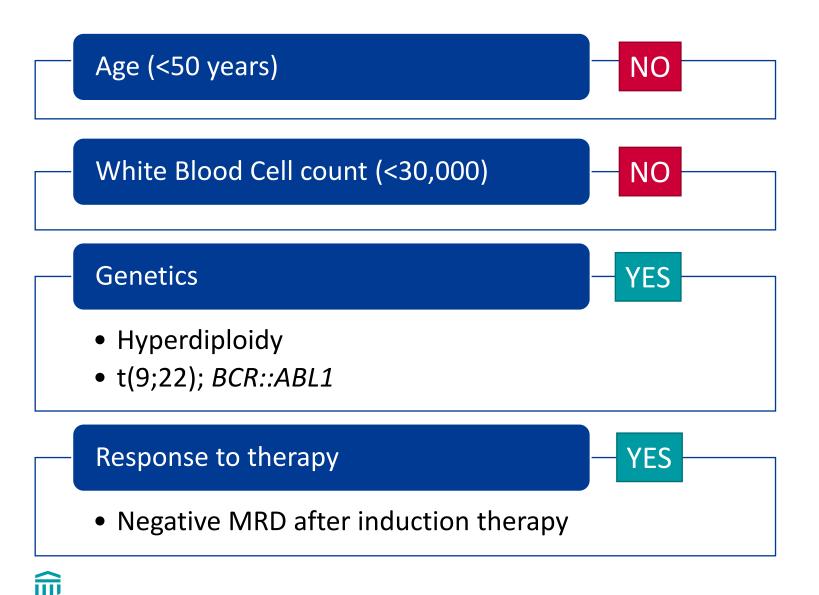
Measurable (Minimal) Residual Disease (MRD) Concept

MRD is the presence of aberrant cells below the limit of morphologic detection (< 5%)

MRD detection methods:


- Flow Cytometry (aberrant immunophenotype)
- RT-PCR (specific fusions)
- Next Generation Sequencing

MRD sensitivity:


- Flow cytometry: 1 x 10⁻⁴
- RT-PCR: 1 x 10⁻⁴
- Next Generation Sequencing: 1 x 10⁻⁶

MRD use:

• Prognosis

Favorable prognostic factors for B-ALL: What about our patient?

Our patient falls into the intermediate prognostic group and is undergoing alloSCT

Summary of Case 1:

Flow cytometry is essential for assigning cell lineage

- Need to know what populations to gate on!
- Morphology and ungated events

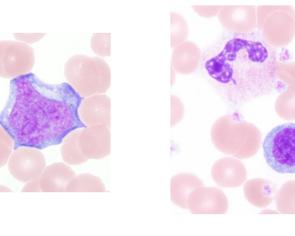
Aberrant marker expression can predict underlying genetic alterations

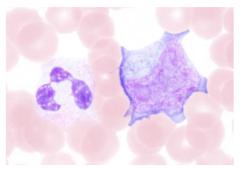
 Myeloid markers in B-ALL often signify the presence of Ph+ chromosome 3

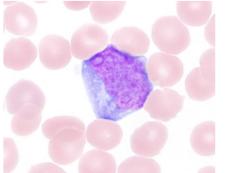
Flow cytometry can be used for identification of products of genetic alterations

• *CRLF2* is overexpressed in 50% of B-ALL and can guide further testing

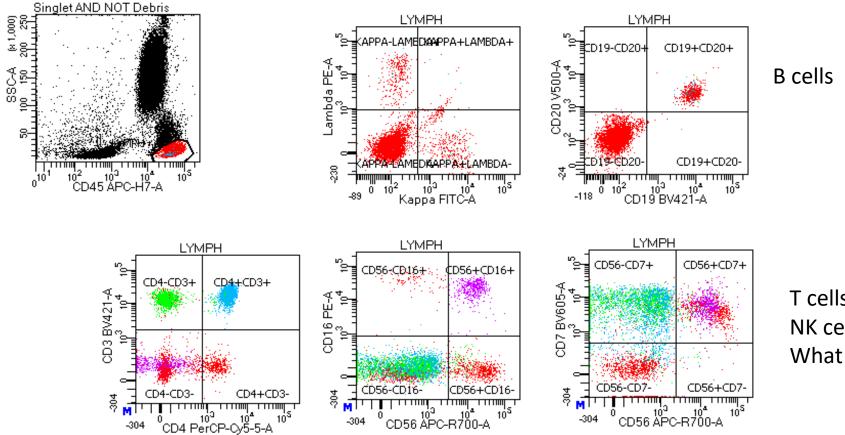
Case 2. Hit me with your best shot ...


65-year-old patient presenting with widespread rapidly progressing skin lesions

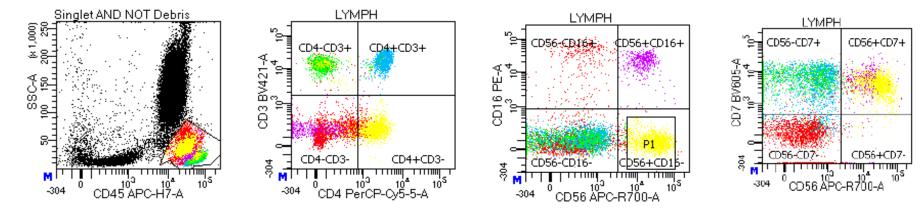



Skin biopsy at OSH – High-grade lymphoid neoplasm

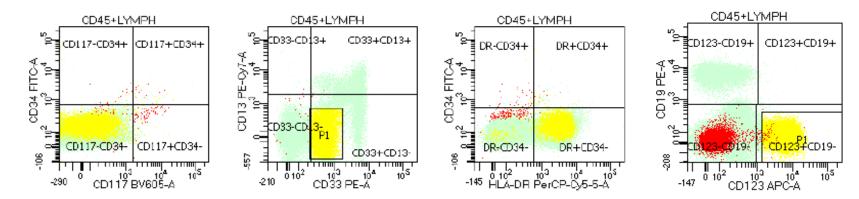
CBC at presentation:



Result **Reference range Parameters** 3.81 – 8.94 K/μL WBC 8.92 - Neutrophils 6.23 (H) 2.23 – 6.11 K/μL - Lymphocytes 0.21 – 2.74 K/μL 1.49 0.20 – 0.87 K/μL - Monocytes 0.83 12.5 - 16.3 g/dL 14.2 Hgb 37.1 – 49.5 % HCT 41.4 83.2 79.0 - 97.0 fL MCV PLT 125 (L) 152 - 440 K/K/μL


6% OTHERS

Lymphoma panel: Lymphocyte gate (small)



T cells (green+blue) NK cells (purple) What are the red cells?

Lymphoma panel: Lymphocyte gate (<mark>7% large cells</mark>)

Leukemia panel:

CD45, CD4, CD56^{br}, CD123^{br} CD7, CD33^{dim} CD34, other myeloid, B-cell, T-cell markers

(+):

(-):

(+):

How to interpret immunophenotypic markers?

Lineage specific (LS)

Myeloid lineage

- Myeloperoxidase Monocytic lineage
- Non-specific esterase
- Lysozyme

B-cell lineage

- CD19 (strong) + 1 LA antigen
- CD19 (weak) + 2 LA antigens

T-cell lineage

CD3 (surface or cytoplasmic)

NK-cell lineage

Lineage associated (LA)

Myeloid lineage

- CD13, CD15, CD33, CD117, CD123
- - LD11b, CD14, CD15, CD16, CD33,

CD45, CD4, CD56^{br}, CD123^{br}

CD7, CD33^{dim}

- No lineage specific markers! CD10, CD20, CD22, CD27, PAX5, CD79a
 - Light and heavy chains

T-cell lineage

CD2, CD4, CD5, CD7, CD8

NK-cell lineage

CD8 (dim), CD16, CD27, CD28, CD56, CD94, KIR

Private Information

Additional information:

Karyotype:

46,XY[20].nuc ish(D6Z1,MYBx2)[100],(MYCx2)(5"MYC sep 3"MYCx1)[36/100]

Molecular:

- ASXL1 p.E635Rfs*15 7.5% VAF NRAS p.G13D 7.7% VAF
- PPM1D p.E475Kfs*8 1.5% VAF
- TET2 p.Q644* 10.3% VAF

Summary of diagnostic findings

Multiorgan involvement:

- ✓ Skin, bone marrow, peripheral blood, CSF
- Likely lymph nodes (FDG-avid lymph node above and below diaphragm) and spleen (marked splenomegaly of 17 cm)

Blastoid morphology:

 Intermediate to large neoplastic cells with round to slightly irregular nuclei, prominent small nucleoli, scant to moderate amounts of agranular cytoplasm

Immunophenotype - no lineage specific markers:

✓ CD45(dim)+, CD123+, CD4+, CD56+, CD7+, CD33+, HLA-DR+

Normal karyotype but MYC rearrangement by FISH

Myeloid-associated mutations

✓ TET2, ASXL1, NRAS, PPM1D

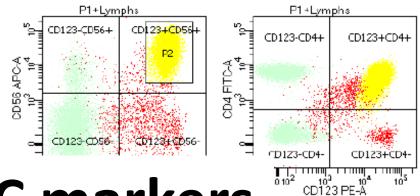
Blastic Plasmacytoid Dendritic Cell Neoplasm (BPDCN)

Clonal hematopoietic neoplasm:

- ✓ Cell of origin plasmacytoid dendritic cell
- ✓ Distinct WHO entity

Epidemiology:

- ✓ 0.04 cases per 100,000 people
- ✓ Median age: 53-68 years
- ✓ Male to female ratio: 2 to 3.3:1


Molecular pathogenesis:

- ✓ Genomic losses: 5q, 6q, 12p, 13q, 17p, 15q, -9
- Commonly deleted regions: 9p21.3 (CDKN2A/CDKN2B), 13q13.1-q14.3 (RB1), 12p13.2-p13.1 (CDKN1B), 13q11-q12 (LATS2), and 7p12.2 (IKZF1)
- ✓ Myeloid mutations: *TET2, ASXL1, NRAS, ATM, MET, KRAS, IDH2, KIT*

Prognosis:

✓ OS <2 years (17-34 months)

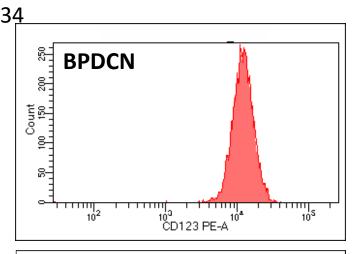
BPDCN Diagnosis:

ski 123-4-56 and one other PDC markers

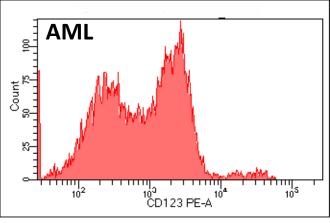
BN.

33

LN - 30%


CSF - 30%

Liver and spleen – 20%


Immunophenotype is the key!

- Positive for pDC markers: CD123/IL-3Ra, CD2AP, TCL1, CD303/BDCA-2, BCL11A, SPIB
- 2. CD4 and CD56
- 3. Absence of lineage specific markers

	Myeloid		Monocytic		NK/T		PDC			Immature			
	CD13	CD33	MPO	CD4	NSE	Lysozyme	CD7	CD56	CD123	TCL1	CD303	TdT	CD34
BPDCN													
AML													
AMoL													
													33

AML AML 10² 10³ CD123 PE-A^{10⁴} 10³

How to treat?

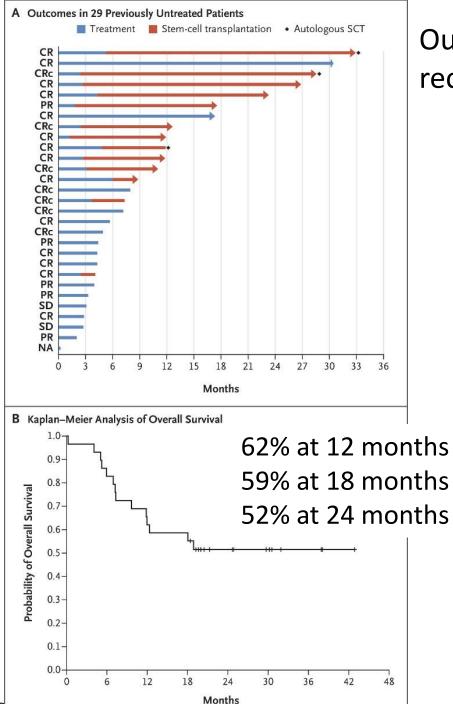

No standard care ALL-like regimens followed by SCT

TABLE 4 | Clinical trials of anti-CD123 mAbs in myeloid neoplasms.

Disease type and inclusion criteria	Drug or drug combination, other therapies	Outcome measures	(Estimated) enrollment	Clinical trials identifier	Trial status	
AML in first remission, high risk of relapse, patients not eligible for post- remission chemotherapy or aHSCT	CSL362 (anti-CD123)	Primary: AE and DLT Secondary: PK and ADA	30	NCT01632852	Completed (mid 2015)	
R/R AML R/R MDS Patients not eligible for curative therapy	KHK2823 (anti-CD123)	Primary: AE Secondary: PK, ORR, OS, EFS, RFS, DFS, and ADA	60	NCT02181699	Active, not recruiting (completed mid 2017)	
R/R or de novo AML Patients not eligible for curative therapy	HMA vs. HMA + JNJ- 56022473 (talacotuzumab, CSL362, anti-CD123)	Primary: CRR, OS Secondary: ORR, DOR, CR, EFS, RFS, AE, ADA, QOL, and PK	326	NCT02472145	Active, not recruiting (estimated completion mid 2018)	
(talacotuzumab, CSL362, Sec		Primary: ORR Secondary: AE, OS, PFS, HI, QOL, and DOR	43	NCT02992860	Suspended (estimated completion late 2018)	
		Primary: AE, LA, and DLT Secondary: PK, ADA, ORR, DFS, and OS	102	NCT02848248	Recruiting (estimated completion mid 2019)	
R/R AML R/R BPDCN High-risk MDS R/R CMML, R/R bc CML, R/R MPN Patients not eligible for curative therapy	IMGN632 (anti-CD123, DGN549 ADC)	Primary: MTD Secondary: AE, ORR, PK, and ADA	155	NCT03386513	Recruiting (estimated completion early 2021)	

Private Information

Schürch CM. Front Oncol. 2018 May 18;8:152.

Outcomes of 29 previously untreated BPDCN patients who received first-line treatment with Tagraxofusp

Pemmaraju N and Lane AA et al. N Engl J Med. 2019 Apr 25;380(17):1628-1637

Back to our patient: after one cycle of CD123-targeted ADC the patient is in complete remission

*	Skin - clear
Ľ	CSF - clear
?	BM – negative, including flow cytometry MRD
¢ ₁ 3	Imaging - Most of the prior intensely FDG-avid lymph nodes, FDG uptake in the spleen, skin and cutaneous/subcutaneous tissues has resolved
A lat	CBC – mild leukocytosis and anemia

Targeted therapies

Small molecules

Tyrosine kinase inhibitors

 Gleevec in Ph+ B-ALL

 Epigenetic regulatory proteins

 Ivosidenib (*IDH1*) in AML

 DNA damage repair enzymes
 Proteasome inhibitors

 Bortezomib in MM

Macromolecules

Monoclonal antibodies

- Blinatumomab (CD19/CD3) in B-ALL

Polypeptides

- Romiplostim (TPO) for ITP
- □Antibody-drug conjugates
- Tagtaxofusp (anti-CD123) in BPDCN CAR-T cells

- Yescarta for DLBCL

Zhong, L., Li, Y., Xiong, L. *et al*. Small molecules in targeted cancer therapy: advances, challenges, and future perspectives. *Sig Transduct Target Ther* **6**, 201 (2021). https://doi.org/10.1038/s41392-021-00572-w

Summary of Case 2:

Immunophenotyping is essential for assigning cell lineage

- Need to know what populations to gate on!
- Morphology and ungated events

123-4-56

- BPDCN diagnosis could be tricky
- Remember this markers combination

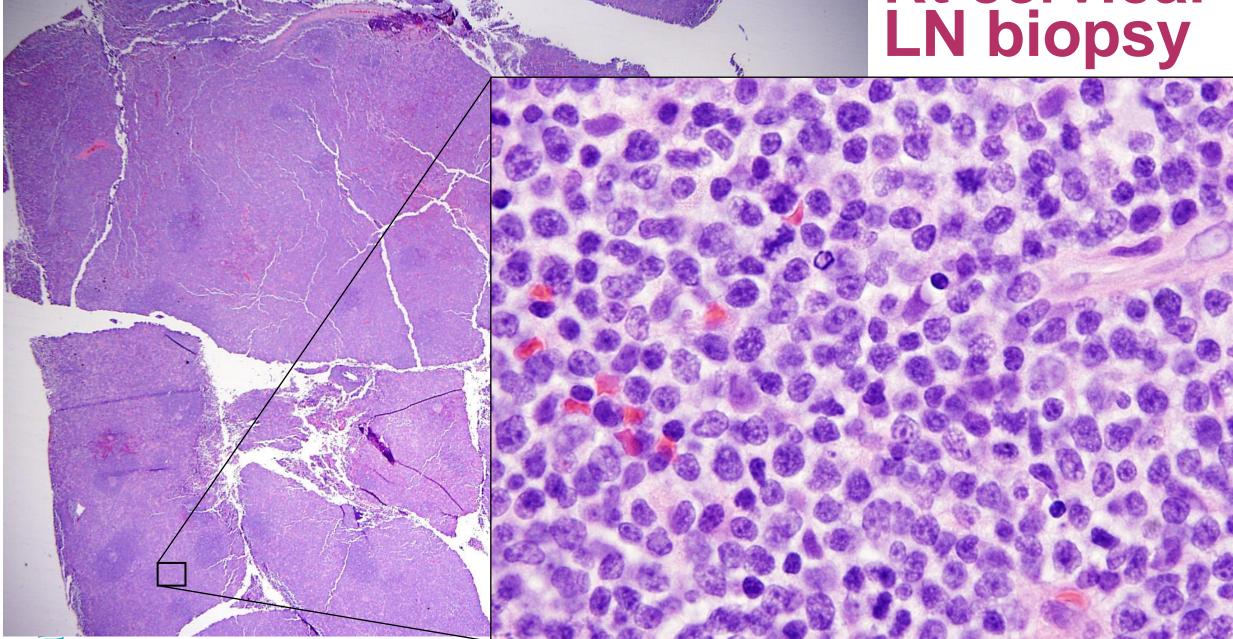
3

Antigen expression and intensity is vital for targeted therapies

• CD123 is a target for BPDCN, as well as AMLs

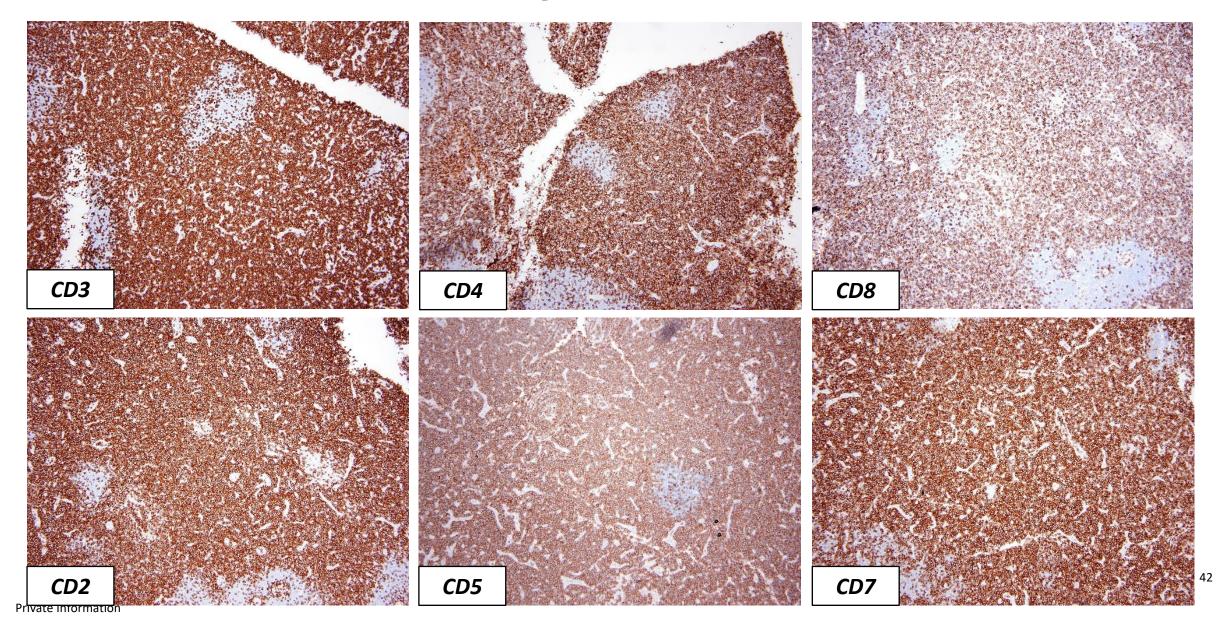
Case 3. Blue's Clues ...

46-year-old man is presenting with lymphadenopathy

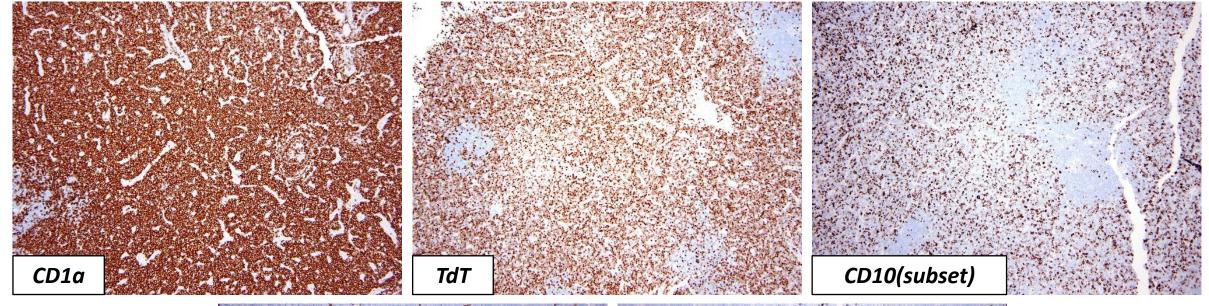

Diffuse lymphadenopathy:

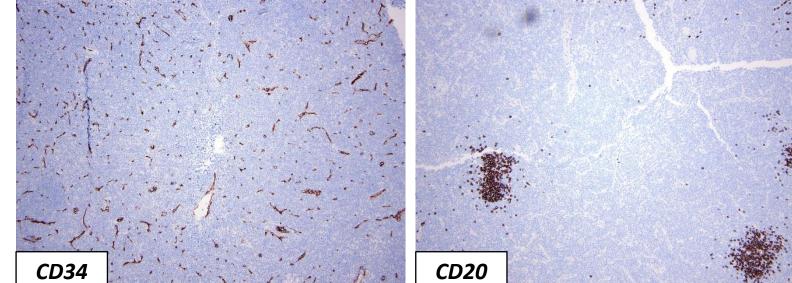
• CT: left axillary lymphadenopathy with lymph nodes measuring up to 3.3 x 2.3 cm, bilateral supraclavicular adenopathy, left periaortic retroperitoneal adenopathy along the iliac chain bilaterally measuring up to 5 cm. There is no splenomegaly.

CBC: WBC 10.8, Hgb 13.6 and PLT 215


• No WBC differential is provided

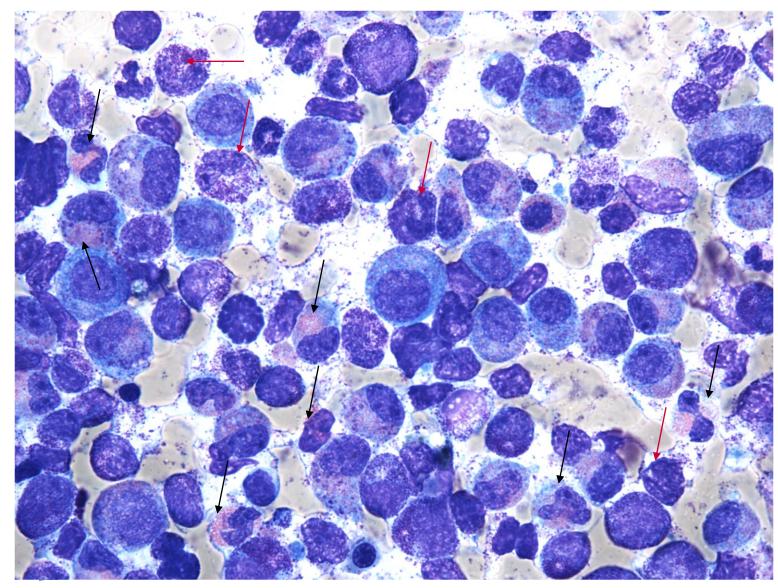
Rt cervical LN biopsy




Private Information

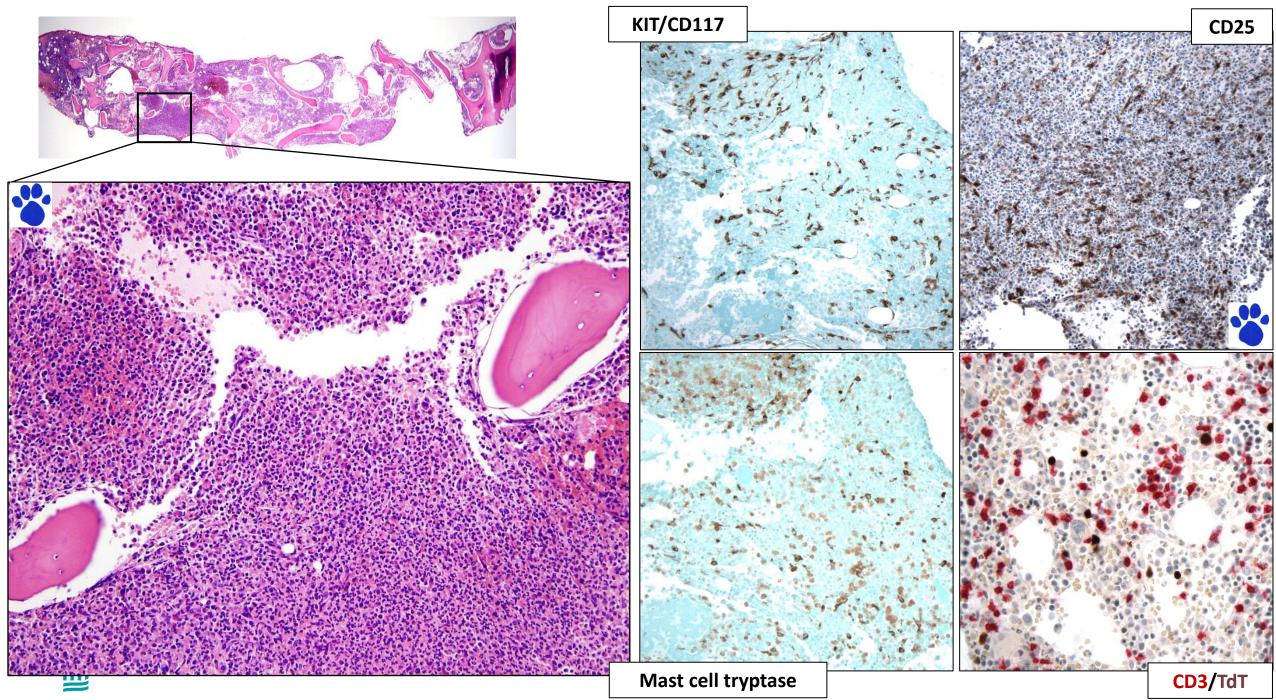
Positive for many T-cell markers

Positive for markers of immaturity

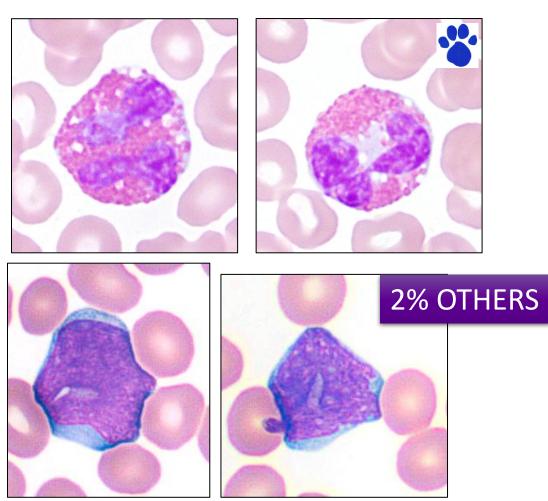

T lymphoblastic lymphoma

(+) CD3, CD4, CD8, CD2, CD5, CD7, CD1a, TdT, CD10(subset), PD1

(-) ALK1, CD34, TCL1, FoxP3, CD25, CD30, CD20, PAX5

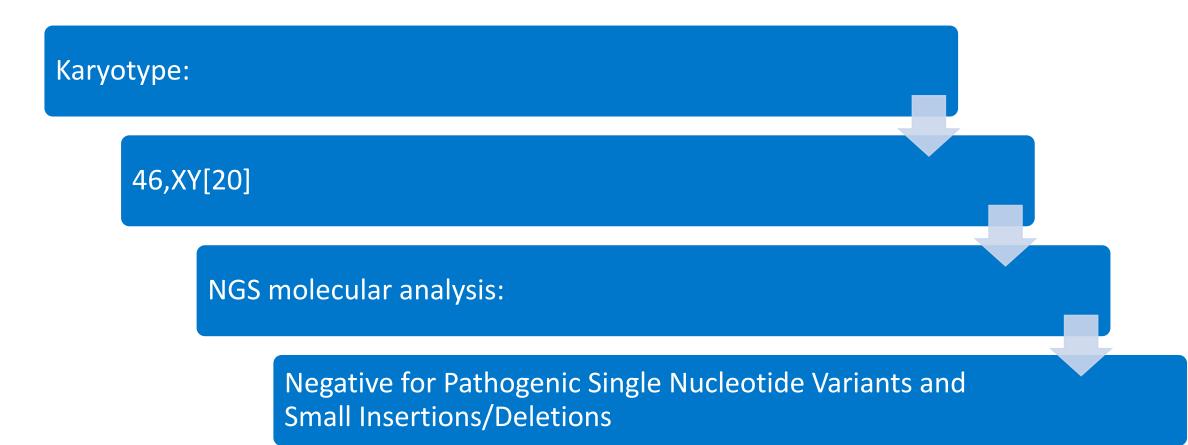


Bone marrow aspirate


Differential count:

Cellularity : Increased Megakaryocytes : Present Blasts t -Promyelocytes : 4% Myeloid : 78%; markedly increased eos (including immature forms) and some eo-baso forms, neutrophils with prominent granules Erythroid : 10% Lymphocytes : 8% Plasma cells : -: -; ?Mast cells, 🎽 Others partially degranulated M:E ratio : 7.8:1

Private Information


CBC at the time of BM biopsy:

Parameters	Result	Reference range
WBC	12.32 (H)	3.81–8.94 K/μL
- Neutrophils	9.11 (H)	2.23 – 6.11 K/μL
- Lymphocytes	1.11	0.21 – 2.74 K/μL
- Monocytes	0.49	0.20–0.87 K/μL
- Eosinophils	0.49	0–0.52 K/μL
- Basophils	0.25 (h)	0-0.11 K/μL
Hgb	8.7 (L)	12.5 - 16.3 g/dL
НСТ	27.8 (L)	37.1 – 49.5 %
MCV	86.3	79.0 - 97.0 fL
PLT	374	152 - 440 K/K/μL

Markedly elevated tryptase at 82.1 ng/mL

Genetic analysis

Summary of diagnostic findings (so far ...)

CBC

- Mild leukocytosis with 2% blasts, 4% eosinophils with abnormal morphology
- Anemia but no thrombocytopenia

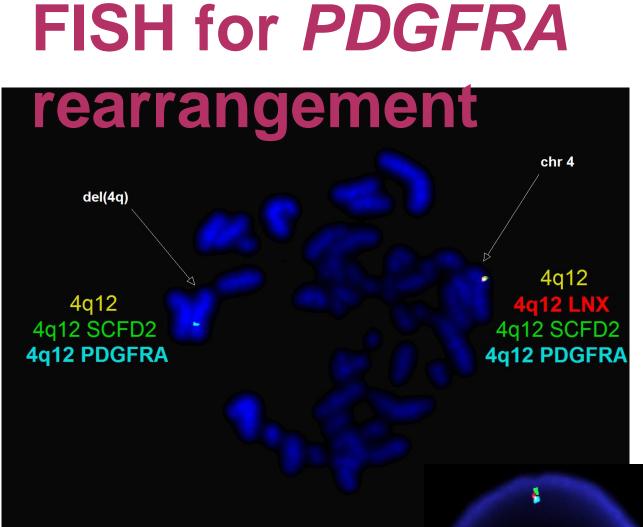
Lab tests:

Markedly elevated tryptase at 82.1 ng/mL

Multiorgan involvement:

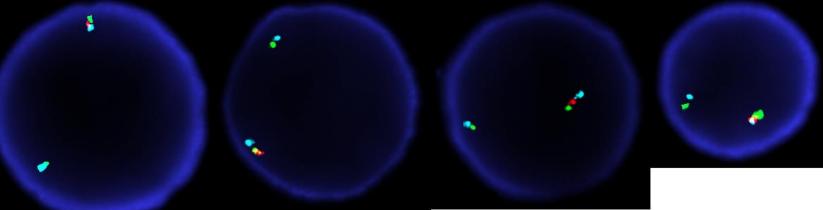
- LN T-LBL
- BM ?reactive or ?some kind of MPN ?CEL ?SM ?SM-AHN:
- Markedly hypercellular
- Marked myeloid hyperplasia (hypergranular)
- Marked eosinophilia (partially granulated, cytoplasmic vacuoles, abnormal nuclear segmentation)
- Increased mast cells (hypogranular, mostly round, clusters <15 cells, aberrant CD25)

Genetics:

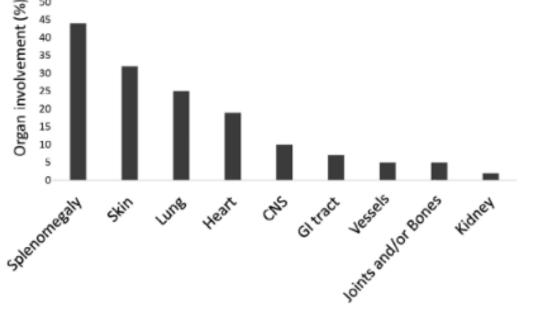

Normal

 \square

We have options!

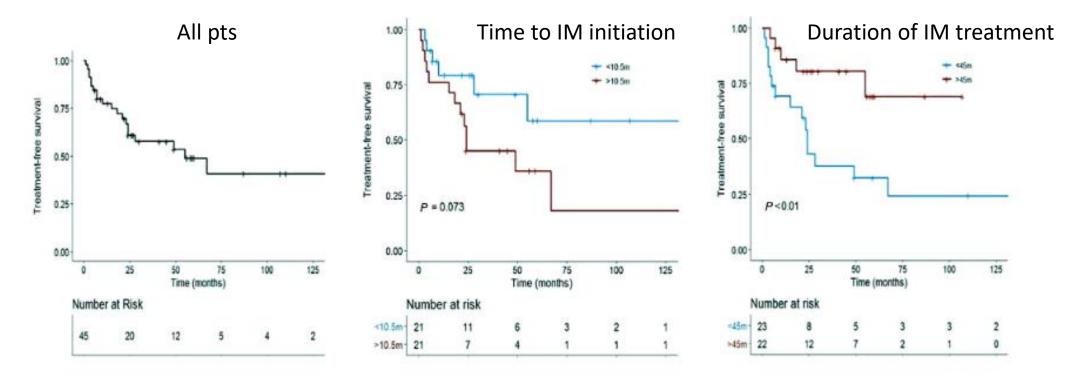

- 1. T lymphoblastic lymphoma (extramedullary)
 - Unequivocal
- 2. Systemic mastocytosis
 - Pro increased mast cells in BM, forming clusters, spindled morphology, aberrant CD25, increased tryptase
 - Con absence of *KIT* mutation
- 3. Systemic mastocytosis with an associated hematological neoplasm
 - Pro see #2 + hypercellularity with marked neutrophilia and eosinophilia with abnormal morphology
 - Con see #2 + absence of myeloid-associated pathogenic variants
- 4. #1 + #2 + #3
 - Pro unifying diagnosis, such as MLN-eo (some are cryptic), male gender, targeted therapy
 - Con absence of PB eosinophilia

Positive in 69%



Patients	N = 151		
Male	143 (96)		
Age at diagnosis	49 +/- 12		
Number of organs involved			
Asymptomatic	26 (17)		
1	41 (28)		
2	36 (24)		
3 or more	31 (21)		
CBC			
Eosinophils (/mm3)	10 309 +/- 5960		
Hemoglobin (g/dl)	13 +/- 2		
Platelets (/mm3)	195 700 +/- 63 600		
Neutrophils (/mm3)	6850 +/- 5330		
Lymphocytes (/mm3)	2650 +/- 1120		
Basophils (/mm3)	240 +/- 270		
Monocytes (/mm3)	640 +/- 415		
F/P transcript screening			
PCR	140/140 (100)		
FISH	87/87 (100)		
Other			
High B12 levels	74/79 (94)		
Median (IQR) serum B12 levels (pmol/l)	1741 (1170-2080)		
High tryptase levels	45/57 (79)		
Median (IQR) serum tryptase levels (ng/mL)	23 (14-43)		
High CRP levels	34/118 (29)		
Median (IQR) serum CRP levels (mg/L)	19 (9-30)		
High total IgE levels	12/86 (14)		
Median (IQR) serum IgE levels	20 (8-168)		

Exclusively sensitive to imatinib! OS: 1-year 99%, 5-year 95% and 10-year 84% None developed accelerated phase

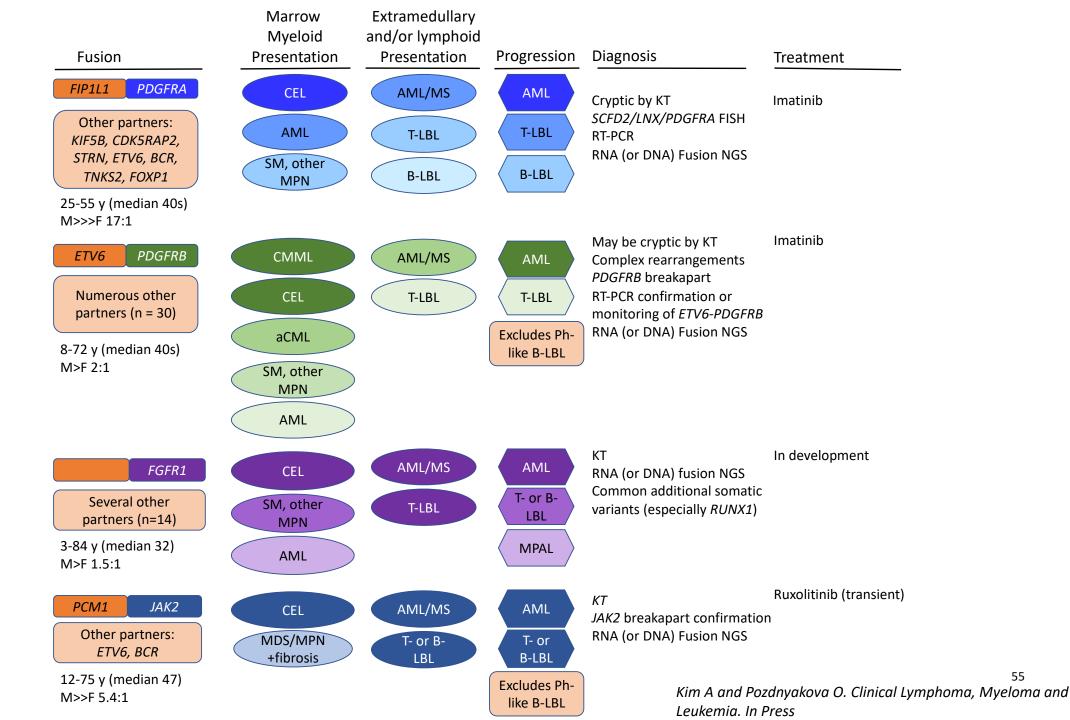

Frequency of organ involvement

Rohmer J et al. Am J Hematol. 2020 Nov;95(11):1314-1323PMID: 32720700.

52

Predictors of relapse after imatinib (IM) treatment withdrawal (n=46 pts)

	Univariate analysis			Multivaria	Multivariate analysis	
	HR	CI95%	P-value	HR	CI95%	P-value
Treatment with IM						
Time to IM initiation (months)	1.01	[1.00-1.03]	.01	1.01	[0,99-1.03]	.05
Sudden withdrawal	1.16	[0.48-2.85]	.74			
Total IM treatment duration	0.97	[0.95-0.99]	.002	0.97	[0.95-0.99]	.001
IM starting dose	1	[0.99-1.00]	.77			
Last IM dose before withdrawal	1	[0.99-1.01]	.95			


Private Information

Rohmer J et al. Am J Hematol. 2020 Nov;95(11):1314-1323PMID: 32720700.

Myeloid/lymphoid neoplasms with *PDGFRA* rearrangement

- >90% of *PDGFRA* rearrangements are cytogenetically <u>cryptic</u>
 - FIP1L1::PDGFRA cryptic 4q12 deletion
 - Other partners (7): BCR (22q11), ETV6 (12p13), KIF5B (10p11), CDK5RAP2 (9q33), STRN (2p22), TNKS2 (10q23), FOXP1 (3p13)
 - PDGFRA mutation
- **Diverse** morphologic spectrum usually with hypereosinophilia
 - CEL, AML, ALL and SM
 - abnormal eosinophil morphology (uneven granulation, hypo- or hypersegmentation)
- ~20% of cases present <u>without</u> PB eosinophilia
 - Some have variant *PDGFRA* rearrangements other than *FIP1L1*; may show abnormal karyotype
 - Some show myeloid/eosinophilic proliferations in biopsies that can be a clue
- <u>Extramedullary</u> presentation is common ~50% of cases and it can be the primary site of *PDFGRA*-rearranged neoplasm
 - LN is the most common site of involvement
 - MPN with eosinophilia is the most common pattern (but can vary)
- ~40% of cases show aberrant mast cell proliferations in the absence of a *KIT* mutation (helpful feature!)
- If *PDGFRA* FISH is negative and suspicion is high use <u>other</u> molecular methods
 - RNAseq, SNP-CN microarray
- Consider a <u>trial</u> of TKI in cases with hypereosinophilia not responsive to conventional therapy and perform comprehensive retrospective testing in responders

diagnostic patholog gements ofN treatment rearran ene an 50 **Teatures** Clinical and 60

Private Information

55

What happens when we excluded MLN-eo with gene rearrangements and other MPNs?

Chronic eosinophilic leukemia, NOS

- Clonality and abnormal BM morphology (i.e. dysplasia)
- 2-19% PB or 5-19%% BM blasts

Idiopathic HES

- Exclude above + reactive + LV HE
- BM morphology is normal and shows only increased eosinophils

HE of unknown significance

- Persistent HE and absence of tissue damage
- BM morphology is normal and shows only increased eosinophils

Summary of Case 3:

Cases with *PDGFRA* rearrangement may present without eosinophilia

• Look for clues, such as tissue eosinophilia, abnormal eosinophil morphology, increased mast cells with aberrant CD25 in BM

PDGFRA rearrangement is cryptic

- Be vigilant!
- If suspicion is high, insist on using other molecular methods

3

Correct diagnosis is essential for patient's treatment and prognosis

- TKI have revolutionized treatment
- SeruTime to treatment initiation affects prognosis

What we have covered:

B	Recognize blood and/or bone marrow smears with increased blasts and identify important morphologic clues: Recognition of blasts is essential Some blasts have unique morphologies Pay attention to other cells (numbers and abnormal morphologies)
	Appropriately apply and interpret pertinent ancillary methods to cases presenting with increased blasts: Always perform immunophenotyping to confirm the presence of blasts and their lineage – morphology is deceptive! There are immunophenotypic patterns that are associated with certain underlying genetic alterations Targeted therapies have been developed against certain antigens
+ + • •	Understand the diagnostic and prognostic significance of ancillary testing: Current classification of acute leukemias is based on genetic findings Absence of genetic findings could be a clue! Know potentially cryptic rearrangements

Many genetic findings guide treatment choices

