More is Better, right? Panel vs. Targeted Testing

V.M. Pratt, Ph.D, FACMG Adjunct Professor, Medical and Molecular Genetics

Disclosures

• Employee, Optum Genomics

Objectives

- Understand the different test panels
- Differentiate gene coverage
- Describe standardization efforts

Physicians are introduced to many new genetic tests

Coldbrook Insurance | Physician's Practice Imatest Master | Imatest

Which test is right for my patients?

Testing (r)evolution

Bruce Quinn Associates LLC | Engagements & Experience

Testing (r)evolution

Targeted

Whole "omic" approach

Risk Icon On Speedometer High Risk Meter Vector Stock Illustration Stock Illustration - Download Image Now - iStock (istockphoto.com) https://www.alamy.com/stock-photo-young-strong-woman-warrior-with-big-guns-in-dramatic-urban-night-scene-145283794.html Private Information

PANEL (TARGETED) TESTING

Risk Icon On Speedometer High Risk Meter Vector Stock Illustration Stock Illustration - Download Image Now - iStock (istockphoto.com)

U INDIANA UNIVERSITY

Different (PGx) panels include different

genes

- CYP1A2
- CYP2B6
- CYP2C19
- CYP2C9
- CYP2D6
- CYP3A4
- HLA-A
- HLA-B
- *HTR2A*
- SLC64A
- UGT1A4
- UGT2B15

- CYP1A2
- CYP2B6
- CYP2C Cluster
- CYP2C19
- CYP2C9
- CYP2D6
- CYP3A4
- CYP3A5
- CYP4F2
 - COMT
- DPYD

٠

- F2
- F5
 - GRIK4
- HLA-A
- HLA-B
- HTR2A
- HTRC2
- IL28B (IFNL3)
- MTHFR
- NUDT15
- UGT1A1
- VKORC1

- BDNF
- *COMT*
- CYP1A2
- CYP2B6
- CYP2C19
- CYP2C9
- CYP2D6
- CYP3A4
- CYP3A5
- HLA-A
- HTR2A
- MC4R
- MTHFR
- SLC64A
- UGT2B15

- CYP2B6
- CYP2C Cluster
- CYP2C19
- CYP2C9
- CYP2D6
- CYP3A4
- CYP3A5
- CYP4F2
- DPYD
- NUDT15
- SCLO1B1
- *TPMT*
- VKORC1

• M ^{L3)} • M

What genes should be included for a clinical indication?

BDNF

		LEVEL \$	VARIANT \$	<u>GENE</u> ¢	MOLECULE ¢	<u>TYPE</u> \$	PHENOTYPE \$
	Read Now	Level 3	<u>rs7124442</u>	BDNF	citalopram	Efficacy	Depressive Disorder, Major
(Read Now	Level 3	<u>rs6265</u>	<u>BDNF</u>	Analgesics, Antiinflammatory agents, non-steroids, Ergot alkaloids, opioids, sumatriptan	Other	
	Read Now	Level 3	<u>rs6265</u>	BDNF	paroxetine	Efficacy	Depressive Disorder, Major
	Read Now	Level 3	<u>rs7934165</u>	<u>BDNF</u>	methadone	Dosage	Heroin Dependence, Opioid-Related Disorders
	Read Now	Level 3	<u>rs962369</u>	<u>BDNF</u>	escitalopram, nortriptyline	Toxicity/ADR	Depressive Disorder, Major
(Read Now	Level 3	<u>rs10835210</u>	BDNF	methadone	Dosage	Heroin Dependence, Opioid-Related Disorders
(Read Now	Level 3	<u>rs7103411</u>	BDNF	citalopram	Efficacy	Depressive Disorder, Major
(Read Now	Level 3	<u>rs11030104</u>	BDNF	antipsychotics	Efficacy	Schizophrenia
(Read Now	Level 3	rs6265	BDNF	antidepressants, citalopram, paroxetine	Efficacy	Depressive Disorder
(Read Now クロード	Level 3	<u>rs6265</u> ₽⊒ ₩] ○ ጃ	BDNF	heroin, methamphetamine	Other	Substance-Related Disorders

BDNF

	LEVEL \$	VARIANT \$	<u>GENE</u> 🕈	MOLECULE \$	<u>TYPE</u> ≑	PHENOTYPE \$							
Read Now	Level 3	rs7124442	BDNF	citalopram	Efficacy	Depressive Disorder, Major							
Read Now	Level 3	Is this gene for											
Read Now	Level 3												
Read Now	Level 3	research?											
Read Now	Level 3	rs962369	BDNF	escitalopram, nortriptyline	Toxicity/ADR	Depressive Disorder, Major							
Read Now	Level 3	<u>rs10835210</u>	<u>BDNF</u>	methadone	Dosage	Heroin Dependence, Opioid-Related Disorders							
Read Now	Level 3	<u>rs7103411</u>	BDNF	<u>citalopram</u>	Efficacy	Depressive Disorder, Major							
Read Now	Level 3	rs11030104	BDNF	antipsychotics	Efficacy	Schizophrenia							
Read Now	Level 3	rs6265	BDNF	antidepressants, citalopram, paroxetine	Efficacy	Depressive Disorder							
Read Now	Level 3	rs6265	BDNF	heroin, methamphetamine	Other	Substance-Related Disorders 1:02 PI 2/26/20							

https://www.pharmgkb.org/gene/PA31891/clinicalAnnotation

Evidence-based gene selection

2/3 had limited or no evidence

Am J. Hum Genet, 2017 Jun 1;100(6):895-906, doi: 10.1016/i.aihg.2017.04.015. Epub 2017 May 25. Moderate Definitive/Strong Limited No Evidenc Evaluating the Clinical Validity of Gene-Disease Associations: An Evidence-Based Framework Developed by the Clinical Genome Resource. Strande NT¹, Riggs ER², Buchanan AH³, Ceyhan-Birsoy Q⁴, DiStefano M⁵, Dwight SS⁶, Goldstein J¹, Ghosh R⁷, Seifert BA¹, Sneddon TP⁶, Wright MW⁶, Milko LV¹, Cherry JM⁶, Giovanni MA³, Murray ME³, O'Daniel JM¹, Ramos EM⁸, Santani AB⁹, Scott AE¹⁰, Plon SE⁷, Rehm HL⁴, Martin CL¹¹, Hypertrophic Cardiomyopathy Berg JS¹² Experimental Replication Genetic Evidence Total Points Score Assertion criteria Evidence Over Time (0-12 points) (0-18) (0-6 points) (Y/N) Case-level, family > 2 pubs w/ iene-level experimental segregation, or case-Sum of Genetic evidence that support convincing Description & Experimental control data that the gene-disease evidence over support the gene-Evidence **Categories express** association time (>3 yrs) disease association strength (validity) Assigned Points 4.5 1.5 5.5 LIMITED 1-6 of gene-disease TNNT2-ACTC1-MYH7 MYH7 TPM1-TPM1-TNN13-CSRP3-CSRP3-CSRP3-TNNC1-JPH2-JPH2-JPH2-ML710-MYL2--NYPN-CTA1-ASQ2-CNB2-NKRD1-MYLK2-TCAP-ALR3-MY0Z2-MODERATE 7-11 NEXN IRIM63 RYR2 PDLIM3 WYOM1 Ó 20 association ġ ĤλW OBSCI 8 CALCULATED STRONG 12-18 CLASSIFICATION 12-18 AND replication over DEFINITIVE Experimental Ingles 2018 (ClinGen HCM gene curation expert panel), time Genetic Circulation Prec Med

Ingles J, Goldstein J, *et al.* Evaluating the Clinical Validity of Hypertrophic Cardiomyopathy Genes. Circ Genom Precis Med. 2019 Feb;12(2):e002460. doi: 10.1161/CIRCGEN.119.002460. PMID: 30681346; PMCID: PMC6410971.

Guidelines/Reviews

- National Comprehensive Cancer Network (<u>https://www.nccn.org/</u>)
- Clinical Pharmacogenetics Implementation Consortium (<u>https://cpicpgx.org/</u>)
- GeneReviews® (<u>https://www.ncbi.nlm.nih.gov/books/NBK1116/</u>)
- Clinical Genome Resource (ClinGen) (<u>Welcome</u> <u>to ClinGen (clinicalgenome.org</u>)

U INDIANA UNIVERSITY

How does one resolve discrepancies in evidence?

ClinGen vs NCCN

Cancer	Gene	ClinGen	NCCN
Breast/ovarian	PALB2	Moderate (2017)	Strong (2022)
Colon	GREM1	Strong (2016)	Not well-established (2022)

Hereditary cancer only 46 genes overlap between ClinGen (176 total curated) and NCCN (total 65 curated). ~70% agreement between ClinGen and NCCN.

Use the union or the intersection?

- ClinGen and NCCN
- ClinGen or NCCN
- ClinGen only
- NCCN only

Are there other authoritative practice guidelines?

What variants should be tested for gene(s)?

AMP PGx Working Group

- Victoria M. Pratt (Chair), Optum Genomics
- Karen E. Weck (Co-Chair), University of North Carolina
- Larisa H. Cavallari, University of Florida
- **Makenzie Fulmer**, ARUP Laboratories and University of Utah School of Medicine, Junior member
- Andrea Gaedigk, Children's Mercy Kansas City
- Houda Hachad, AccessDx Laboratory
- Yuan Ji, ARUP Laboratories and University of Utah School of Medicine
- Lisa V. Kalman, Division of Laboratory Systems, Centers for Disease Control and Prevention
- Reynold C. Ly, Indiana University
- Ann M. Moyer, Mayo Clinic, CAP representative
- Stuart A. Scott, Stanford University Medical Center
- **Ron van Schaik,** Erasmus MC University Medical Center, ESPT and DPWG representative
- Michelle Whirl-Carrillo, Stanford University, CPIC/PharmGKB

PGx Genotyping Recommendations are Needed

GOAL: To promote standardization of PGx allele testing across clinical laboratories

- Inconsistent interpretation can lead to discordant therapeutic recommendations
- Publications show lack of consistency in alleles included in commercial platforms and clinical tests
- Genomic Medicine X: Research Directions in Pharmacogenomics Implementation NHGRI Meeting in 2017 - Call for assay standardization

PGx Genotyping Recommendations are Needed

• How do we reduce the variability?

Option 1: Test all known alleles

• Not practical – for *CYP2D6*, there are currently >145 alleles/sub-alleles!!!

Option 2: Sequence instead of targeted genotyping

- · Likely coming in the future
- Current state: Pharmacogenes are technically challenging by short-read
 NGS chemistry
 - Pseudogenes, homologous gene families, duplications, deletions, deeply intronic variants
 - Challenges in reporting genotypes
 - » What do you put on the clinical report when you otherwise have a CYP2D6*2/*4, but also see a rare variant that does not have a corresponding star allele?
 - Challenges in interpreting rare variants/alleles

Option 3: Why not use a similar to ACMG recommendations for CFTR testing?

• Define a minimum set of variants based on multiethnic allele frequency in order to optimize diagnostic test rate

AMP PGx Working Group: Expert consensus recommendation/opinion development

• **Tier 1 -** Minimum "must-test" alleles

Well-characterized effect on the function of the protein and/or gene expression

Appreciable minor allele frequency in a patient population

Available reference materials

Technical feasibility to detect variant in a clinical laboratory (NEW requirement for *CYP2D6*)

- Tier 2 Extended panel
 Meet at least one but not all the criteria for inclusion in Tier 1
- Other

Variants with unknown or uncertain function are not recommended for inclusion in clinical test panels

AMP PGx Working Group - CYP2C19

 First deliverable: consensus expert opinion recommendations for clinical CYP2C19 testing

The Journal of Molecular Diagnostics

Volume 20, Issue 3, May 2018, Pages 269-276

Special article

Recommendations for Clinical *CYP2C19* Genotyping Allele Selection: A Report of the Association for Molecular Pathology

Victoria M. Pratt ^{*,†} A ⊠, Andria L. Del Tredici ^{*,‡}, Houda Hachad ^{*, §}, Yuan Ji ^{*,¶}, Lisa V. Kalman ^{*, ∥}, Stuart A. Scott ^{*, **, ††}, Karen E. Weck ^{*, ‡, ∭}

Tier 1 CYP2C19 allele recommendations

Table 3 CYP2C19 Tier 1 variant alleles.										
Allele	Allele Functional Status †	Defining Functional Variant	HGVS Nomenclature: NM_000769.2	HGVS Nomenclature: NG_008384.2 [‡]	Reference * Material Available	Multiethnic Allele Frequency				
*2 [§]	No function	rs4244285	c.681G>A	g.24154G>A	Yes	12-54%				
*3	No function	rs4986893	c.636G>A	g.22948G>A	Yes	0.3-15%				
*17	Increased function	rs12248560	c806C>T	g.4195C>T	Yes	4-21%				

- Together these 3 variants account for 40% to > 90% of the currently defined alleles in most racial and ethnic groups.
- Many of the clinical correlative studies have focused on these alleles

* Centers for Disease Control and Prevention GeT-RM Program http://wwwn.cdc.gov/clia/Resources/GetRM/

Pratt, V.M., et al. Characterization of 107 genomic DNA reference materials for CYP2D6, CYP2C19, CYP2C9, VKORC1, and UGT1A1: a GeT-RM and Association for Molecular Pathology collaborative project. J Mol Diagn. 2010; 12: 835–846

Tier 2 CYP2C19 allele recommendations

llele	Functional Status	Defining Variant(s)	Nomenclature: NM_000769.2	Nomenclature: NG_008384.2 [†]	Material Available	Allele Frequency [‡]			
4A	No function	rs28399504	c.1A>G	g.5001A>G	Yes	0.1-0.3%			
*4B	No function	rs28399504; rs12248560	c.[-806C>T; 1A>G]	g. [4195C>T;5001A>G]	Yes	0-0.2%			
*5	No function	rs56337013	c.1297C>T	g.95033C>T	No	0%			
*6	No function	rs72552267	c.395G>A	g.17748G>A	Yes	0-0.1%			
*7	No function	rs72558186	c.819+2T>A	g.24294T>A	No	0%			
*8	No function	rs41291556	c.358T>C	g.17711T>C	Yes	0.1-0.3%			
*9	Decreased function	rs17884712	c.431G>A	g.17784G>A	Yes	0.1-4.2%			
*10	Decreased function	rs6413438	c.680C>T	g.24153C>T	Yes	0.1-6%			
*35 [‡]	No function	rs12769205	c.332-23A>G	g.17662A>G	No	0.8-3.1%			
 *35[‡] No function rs12769205 c.332-23A>G g.17662A>G No 0.8-3.1% *4B = *4 (no function) and *17 (increased function) SNPs in same haplotype (in cis) *10 = adjacent to *2 variant may cause 									

MAF < 0.5%

Intermediate function, Clinical relevance less welldefined *35 recently defined, not as well characterized, linked to *2 variant

AMP PGx Working Group - CYP2C9

 Second deliverable: consensus expert opinion recommendations for clinical CYP2C9 testing

The Journal of Molecular Diagnostics Volume 21, Issue 5, September 2019, Pages 746-755

Special article

Recommendations for Clinical *CYP2C9* Genotyping Allele Selection: A Joint Recommendation of the Association for Molecular Pathology and College of American Pathologists

Victoria M. Pratt *, [†] ∧ ⊠, Larisa H. Cavallari *, [‡], Andria L. Del Tredici *, [§], Houda Hachad *, [¶], Yuan Ji *, [∥], Ann M. Moyer *, **, Stuart A. Scott *, ^{††, ‡}, Michelle Whirl-Carrillo *, [§], Karen E. Weck *, [¶]

Tier 1 CYP2C9 Alleles

Allele	Allele Functional Status†	ele Functional Defining HGVS Nomenclature: htus† Functional Variant NM_000771.3		HGVS Nomenclature: NG_008385.1§	Reference Material Available	Multiethnic Allele Frequency
*2¶	Decreased function	rs1799853	c.430C>T, p.Arg144Cys	g.8633C>T	Yes	0-12%
*3‡	Decreased function	rs1057910	c.1075A>C, p.lle359Leu	g.47639A>C	Yes	1-11%
*5	Decreased function	rs28371686	c.1080C>G, p.Asp360Glu	g.47644C>G	Yes	0-1%
*6	Nofunction	rs0333131	c.818del,	g 15625delA	Vec	0_1%
		7000104	p.Lysz75Aigis 54	g.13025delA	163	0-1/0
*8	Decreased function	rs/900194	c.449G>A, p.Arg150His	g.8652G>A	Yes	0-5%
*11	Decreased function	rs28371685	c.1003C>T, p.Arg335Trp	g.47567C>T	Yes	0-2%

† Citations for assignment of function can be found at https://www.pharmvar.org/gene/CYP2C9, last accessed 8/15/2018 [§] CYP2C9 RefSeqGene; ¶ Note that the defining variant of the *35 allele (c.374G>T, p.Arg125Leu) is likely in linkage disequilibrium with the defining *2 variant (c.430C>T, p.Arg144Cys)). ‡ Note that the defining *18 variant of the allele (c.1190A>C, p.Asp397Ala, rs72558193) is likely in linkage disequilibrium with the defining variant of *3 variant (c.1075A>C, p.Ile359Leu, rs1057910)

Tier 2 CYP2C9 Alleles

Allele	Allele Functional Status†	Defining Functional Variant	HGVS Nomenclature: NM_000771.3	HGVS Nomenclature: NG_008385.1§	Reference Material Available	Multiethnic Allele Frequency
			c.1465C>T,			
*12	Decreased function	rs9332239	p.Pro489Ser	g.55363C>T	Yes	0-0.3%
			c.269T>C,			
*13	Decreased function	rs72558187	p.Leu90Pro	g.8301T>C	No	0-0.2%
			c.485C>A,			
15	No function	rs72558190	p.Ser162	g.14125C>A	No	0-0.01%

[§] CYP2C9 RefSeqGene; forward relative to chromosome), † https://www.pharmvar.org/gene/CYP2C9, last accessed 8/15/2018

- *12, *13, and *15: all decreased or no function alleles
- All have low minor allele frequencies (<0.5%)
- *13 and *15 currently lack RMs

AMP PGx Working Group - Warfarin

Third deliverable: consensus expert opinion recommendations for clinical warfarin testing

The Journal of Molecular Diagnostics Volume 22, Issue 7, July 2020, Pages 847-859

Special article

Recommendations for Clinical Warfarin Genotyping Allele Selection: A Report of the Association for Molecular Pathology and the College of American Pathologists

Victoria M. Pratt ^{*,†} A ⊠, Larisa H. Cavallari ^{*,‡}, Andria L. Del Tredici ^{*,§}, Houda Hachad ^{*,¶}, Yuan Ji ^{*, ∥}, Lisa V. Kalman ^{**}, Reynold C. Ly ^{*, ††}, Ann M. Moyer ^{*, ‡†}, Stuart A. Scott ^{*, ∭,} ¶¶, Michelle Whirl-Carrillo ^{*, Ⅲ}, Karen E. Weck ^{*, ***}

Tier 1 Warfarin PGx Alleles

Gene	Allele	Allele Functional Status	Defining Functional Variant	HGVS genomic Nomenclature	HGVS cDNA Nomenclature	HGVS protein Nomenclature	Reference Material Available	Multiethnic Allele Frequency
VKORC1	c 1639G>A	Decreased gene expression	rs9923231	NG_011564.1: g.3588G>A	NM_024006.5: c 1639G>A	N/A	Yes	10-88%

- VKORC1*2 c.-1639G>A, a promoter variant, associated with reduced expression of the warfarin target and lower dosing requirement (c.-1639A)
- Common polymorphism, in ~41-47% Caucasian and Middle Eastern, ~88% East Asian, and ~13% African, and ~15% South/Central Asian populations
- 1173C>T, rs9934438, in high LD with c.-1639G>A in most populations, "tag" variant for functional variant, not included in either Tier 1 or 2
- 2017 CAP PT survey: 80% labs test only c.-1639G>A, 21% labs test both variants, and 4% labs dot not test the c.-1639G>A

Tier 2 Warfarin PGx Alleles

Gene	Allele	Allele Functional Status	Defining Functional Variant	HGVS genomic Nomenclature	HGVS cDNA Nomenclature	HGVS protein Nomenclatur e	Reference Material Available	Multiethn ic Allele Frequenc y
CYP4F2	*3	Uncertain/unknown function	rs2108622	NG_007971.2: g.23454G>A	NM_001082.4: c.1297G>A	p.Val433Met	Yes	10-40%
VKORC1		Warfarin resistant	rs72547529	NG_011564.1: g.6557G>A	NM_024006.5: c.196G>A	p.Val66Met	No [§]	0-0.25%
VKORC1		Warfarin resistant	rs61742245	NG_011564.1: g.5332G>T	NM_024006.5: c.106G>T	p.Asp36Tyr	No [§]	0-3.8%
2C Cluster		unknown; variant in linkage disequilibrium with warfarin effect in individuals of West African ancestry	rs12777823	NC_000010.10: g.96405502G>A			No [§]	0-30%

AMP PGx Working Group CYP2D6

4th deliverable: consensus expert opinion recommendations for clinical CYP2D6 testing

The Journal of Molecular Diagnostics

Volume 23, I	ssue 9,	September	2021,	Pages	1047-1064
--------------	---------	-----------	-------	-------	-----------

	THE JOURNAL OF
Ě	BLAGNOSTICS
F	7
7	

Special article

Recommendations for Clinical *CYP2D6* Genotyping Allele Selection: A Joint Consensus Recommendation of the Association for Molecular Pathology, College of American Pathologists, Dutch Pharmacogenetics Working Group of the Royal Dutch Pharmacists Association, and the European Society for Pharmacogenomics and Personalized Therapy

Victoria M. Pratt ^{*,†} A ⊠, Larisa H. Cavallari ^{*,‡}, Andria L. Del Tredici ^{*, §}, Andrea Gaedigk ^{*,¶}, Houda Hachad ^{*,} ^I, Yuan Ji ^{*, **}, Lisa V. Kalman ^{*,††}, Reynold C. Ly ^{*,} ^{‡‡}, Ann M. Moyer ^{*, §}, Stuart A. Scott ^{*,} ¶, ^{III}, R.H.N. van Schaik ^{*, ***, †††}, Michelle Whirl-Carrillo ^{*, ‡‡}, Karen E. Weck ^{*, §}

Allele	Allele Functional Status assigned by CPIC ⁺	Core Variant(s) [∥]	Legacy Nomenclature (M33388) ATG Start*‡	RefSeqGene LRG_303 (NG_008376.4) ATG Start*	RefSeqGene LRG_303 (NG_008376.4)	HGVS Genomic Nomenclature (GRCh38) (NC_000022.11)	HGVS cDNA Nomenclature LRG_303 (NM_000106.6*)	HGVS Protein Nomenclature: LRG_303 (NP_000097.3)	Reference Material Available	Multiethnic Allele Frequency
*2 *3	Normal function No function	rs16947, rs1135840 <u>rs35742686</u>	2850C>T, 4180G>C 2549delA	2851C>T, 4181G>C 2550delA	g.7870C>T, g.9200G>C g.7569del	g.42127941G>A, g.42126611C>G g.42128242del	c.886C>T, c.1457G>C <u>c.775del</u>	p.Arg296Cys, p.Ser486Thr <u>p.Arg259fs</u>	Yes Yes	3.9-29.5% <0.1-1.6%
*4	No function	<u>rs3892097</u>	<u>1846G>A</u>	<u>1847G>A</u>	g.6866G>A	g.42128945C>T	<u>c.506-1G>A</u>	(splicing defect)	Yes	0.5-18.5%
*5	No function	<i>CYP2D6</i> full gene deletion							Yes	1.6-5.4%
*6	No function	<u>rs5030655</u>	<u>1707delT</u>	<u>1708delT</u>	g.6727del	g.42129084del	<u>c.454del</u>	p.Trp152fs	Yes	0-1.1%
*9	Decreased function	<u>rs5030656</u>	2615delAAG	2616delAAG	g.7635_7637del	g.42128176_421281 78del	<u>c.841_843del</u>	p.Lys281del	Yes	0-2.8%
*10	Decreased function	<u>rs1065852,</u> rs1135840	<u>100C>T</u> , 4180G>C	<u>100C>T</u> , 4181G>C	<u>g.5119C>T,</u> g.9200G>C	g.42130692G>A, g.42126611C>G	<u>c.100C>T</u> , c.1457G>C	<u>p.Pro34Ser,</u> p.Ser486Thr	Yes	1.4-43.6%
*17	Decreased function	<u>rs28371706,</u> rs16947, rs1135840	<u>1023C>T,</u> 2850C>T, 4180G>C	<u>1022C>T</u> , 2851C>T, 4181G>C	g.6041C>T, g.7870C>T, g.9200G>C	g.42129770G>A, g.42127941G>A, g.42126611C>G	<u>c.320C>T</u> , c.886C>T, c.1457G>C	p. <u>Thr107Ile</u> , p.Arg296Cys, p.Ser486Thr	Yes	<0.1-19.3%
*29	Decreased function	<u>rs59421388</u> , <u>rs61736512+</u> <u>rs1058164</u> , rs16947, rs1135840	<u>3183G>A,</u> <u>1659G>A,</u> <u>1661G>C,</u> 2850C>T, 4180G>C	<u>3184G>A,</u> <u>1660G>A,</u> <u>1662G>C,</u> 2851C>T, 4181G>C	<u>g.8203G>A</u> , <u>g.6679G>A</u> <u>g.6681G>C</u> , g.7870C>T, g.9200G>C	<u>g.42127608C>T,</u> <u>g.42525132_425251</u> <u>34delinsGAT,</u> g.42127941G>A, g.42126611C>G	<u>c.1012G>A</u> , <u>c.406_408delinsATC</u> , c.886C>T, c.1457G>C	<u>p.Val338Met,</u> <u>p.Val136Ile,</u> p.Arg296Cys, p.Ser486Thr	Yes	0-12.1%
*41	Decreased function	<u>rs28371725,</u> rs16947, rs1135840	<u>2988G>A</u> , 2850C>T, 4180G>C	<u>2989G>A</u> , 2851C>T, 4181G>C	<u>g.8008G>A</u> , g.7870C>T, g.9200G>C	g.42127803C>T, g.42127941G>A, g.42126611C>G	<u>c.985+39G>A,</u> c.886C>T, c.1457G>C	<u>N/A (Splicing</u> <u>Defect),</u> p.Arg296Cys, p.Ser486Thr	Yes	0.8-15.4%
xN	variable, depending the duplicated alleles	duplications							Yes	variable

Allele	Allele Functional Status assigned by CPIC†	Core Variant(s)	Legacy Nomenclature (M33388) ATG Start*‡	RefSeqGene LRG_303 (NG_008376.4) ATG Start*	RefSeqGene LRG_303 (NG_008376.4)	HGVS (Nomen (NC_00	Genomic Iclature (GRCh38) 10022.11)	HGVS cDNA Nomenclature LRG_303 (NM_000106.6*)	HGVS Protein Nomenclature: LRG_303 (NP_000097.3)	Reference Material Available	Multiethnic Allele Frequency
*2	Normal functior	rs16947, rs1135840	2850C>T, 4180G>C	2851C>T, 4181G>C	g.7870C>T, g.9200G>C	g.4212 g.4212	7941G>A, 5611C>G	c.886C>T, c.1457G>C	p.Arg296Cys, p.Ser486Thr	Yes	3.9-29.5%
*3	No function	rs35742686					<u>242del</u>	<u>c.775del</u>	p.Arg259fs	Yes	<0.1-1.6%
*4	No function	<u>rs3892097</u>	Include	ed beca	ause		<u>945C>T</u>	<u>c.506-1G>A</u>	(splicing defect)	Yes	0.5-18.5%
*5	No function	CYP2D6 full gene deletion	c.886C>T	(2850C>T) a	nd c.1457G>	С				Yes	1.6-5.4%
*6	No function	<u>rs5030655</u>	(4180G>C	;) are present	in other		<u> 084del</u>	<u>c.454del</u>	p.Trp152fs	Yes	0-1.1%
*9	Decreased function	<u>rs5030656</u>	haplotype	S			176_42128178del	<u>c.841 843del</u>	p.Lys281del	Yes	0-2.8%
*10	Decreased function	r <u>s1065852</u> , rs11358	 Often inter differentia 	rrogated by la te haplotypes	abs to		<u>592G>A</u> , 511C>G	<u>c.100C>T</u> , c.1457G>C	p.Pro34Ser, p.Ser486Thr	Yes	1.4-43.6%
*17	Decreased function	<u>rs28371706,</u> rs16947, rs1135840	<u>1023C>T</u> , 2850C>T, 4180G>C	<u>1022C>T</u> , 2851C>T, 4181G>C	<u>g.6041C>T</u> , g.7870C>T, g.9200G>C	g.4212 g.4212	<mark>-770G>A</mark> , 7941G>A, 5611C>G	<u>c.320C>T</u> , c.886C>T, c.1457G>C	<u>p.Thr107Ile</u> , p.Arg296Cys, p.Ser486Thr	Yes	<0.1-19.3%
*29	Decreased function	<u>rs59421388,</u> <u>rs61736512+ rs1058164</u> rs16947, rs1135840	<u>3183G>A, 1659G>A,</u> , <u>1661G>C</u> , 2850C>T, 4180G>C	<u>3184G>A, 1660G>A, 1662G>A, 1662G>C, 2851C>T, 4181G>C</u>	<u>g.8203G>A, g.6679G>A</u> <u>g.6681G>C, g</u> .7870C>T, g.9200G>C	<u>g.4212</u> <u>g.4252</u> <u>GAT</u> , g. g.4212	7 <u>608C>T,</u> 5 <u>132_42525134delins</u> 42127941G>A, 6611C>G	<u>c.1012G>A,</u> <u>c.406_408delinsATC,</u> c.886C>T, c.1457G>C	<u>p.Val338Met, p.Val136ile,</u> p.Arg296Cys, p.Ser486Thr	Yes	0-12.1%
*41	Decreased function	<u>rs28371725</u> , rs16947, rs1135840	<u>2988G>A</u> , 2850C>T, 4180G>C	<u>2989G>A</u> , 2851C>T, 4181G>C	<u>g.8008G>A</u> , g.7870C>T, g.9200G>C	<u>g.4212</u> g.4212 g.4212	<u>7803C>T</u> , 7941G>A, 5611C>G	<u>c.985+39G>A</u> , c.886C>T, c.1457G>C	<u>N/A (Splicing Defect),</u> p.Arg296Cys, p.Ser486Thr	Yes	0.8-15.4%
xN	variable, depending the duplicated alleles	duplications								Yes	variable

Allele	Allele Functional Status assigned by CPIC†	Core Variant(s) [∥]	Legacy Nomenclature (M33388) ATG Start*‡	RefSeqGene LRG_303 (NG_008376.4) ATG Start*	RefSeqGene LRG_303 (NG_008376.4)	HGVS Genomic Nomenclature (GRCh38) (NC_000022.11)	HGVS cDNA Nomenclature LRG_303 (NM_000106.6*)	HGVS Protein Nomenclature: LRG_303 (NP_000097.3)	Reference Material Available	Multiethnic Allele Frequency
*2	Normal function	rs16947, rs1135840	2850C>T, 4180G>C	2851C>T, 4181G>C	g.7870C>T, g.9200G>C	g.42127941G>A, g.42126611C>G	c.886C>T, c.1457G>C	p.Arg296Cys <i>,</i> p.Ser486Thr	Yes	3.9-29.5%
*3	No function	<u>rs35742686</u>	<u>2549delA</u>	<u>2550delA</u>	g.7569del	g.42128242del	<u>c.775del</u>	p.Arg259fs	Yes	<0.1-1.6%
*4	No function	<u>rs3892097</u>	<u>1846G>A</u>	<u>1847G>A</u>	g.6866G>A	g.42128945C>T	<u>c.506-1G>A</u>	(splicing defect)	Yes	0.5-18.5%
*5	No function	<i>CYP2D6</i> full gene deletion							Yes	1.6-5.4%
*6	No function	<u>rs5030655</u>	<u>1707delT</u>	<u>1708delT</u>	g.6727del	g.42129084del	<u>c.454del</u>	p.Trp152fs	Yes	0-1.1%
*9	Decreased function	<u>rs5030656</u>	2615delAAG	2616delAAG	g.7635_7637del	g.42128176_42128 178del	<u>c.841_843del</u>	p.Lys281del	Yes	0-2.8%
*10	Decreased function	<u>rs1065852</u> , rs1135840	<u>100C>T</u> , 4180G>C	<u>100C>T</u> , 4181G>C	<u>g.5119C>T</u> , g.9200G>C	g.42130692G>A, g.42126611C>G	<u>c.100C>T</u> , c.1457G>C	<u>p.Pro34Ser</u> , p.Ser486Thr	Yes	1.4-43.6%
*17	Decreased function	<u>rs28371706,</u> rs16947, rs1135840	<u>1023C>T,</u> 2850C>T, 4180G>C	<u>1022C>T</u> , 2851C>T, 4181G>C	g.6041C>T, g.7870C>T, g.9200G>C	g.42129770G>A, g.42127941G>A, g.42126611C>G	<u>c.320C>T</u> , c.886C>T, c.1457G>C	p.Thr107Ile, p.Arg296Cys, p.Ser486Thr	Yes	<0.1-19.3%
*29	Decreased function	<u>rs59421388,</u> <u>rs61736512+</u> <u>rs1058164,</u> rs16947, rs1135840	<u>3183G>A</u> <u>1659G>A</u> • [<u>1661G>C</u> , 2850C>T, 4180G>C	Duplications m May not a and hybri	ay be detected always disting d alleles	ed by a single puish between o	orobe duplications	<u>o.Val338Met</u> , <u>o.Val136Ile</u> , o.Arg296Cys, o.Ser486Thr	Yes	0-12.1%
*41	Decreased function	<u>rs28371725</u> , rs16947, rs1135840	<u>2988G>A</u> 2850C>T, 4180G>C	 Functiona Sing Dup 	al effect depei le or duplicat licated *1 has	nds on allele du ed *4 allele has > activity than	uplicated s no activity single *1	<u>V/A (Splicing</u> <u>Defect),</u> p.Arg296Cys, p.Ser486Thr	Yes	0.8-15.4%
×N Privi	variable, depending the duplicated alleles	duplications							Yes	variable

Allele	Allele Functional Status assigned by CPIC†	Core Variant(s) [∥]	Legacy Nomenclature (M33388) ATG Start*‡	RefSeqGene LRG_303 (NG_008376.4) ATG Start*	RefSeqGene LRG_30 (NG_008376.4)	HGVS Genomic Nomenclature (GRCh38) (NC_000022.11)	HGVS cDNA Nomenclature LRG_303 (NM_000106.6*)	HGVS Protein Nomenclature: LRG_303 (NP_000097.3)	Reference Material Available	Multiethnic Allele Frequency
*7	No function	<u>rs5030867</u>	<u>2935A>C</u>	<u>2936A>C</u>	<u>g.7955A>C</u>	Do not meet MAF	⁻ for Tier 1	is324Pro	Yes	0-0.6%
*8	No function	<u>rs5030865</u> , rs16947, rs1135840	<u>1758G>T</u> , 2850C>T, 4180G>C	<u>1759G>T,</u> 2851C>T, 4181G>C	<u>g.6778G>T</u> , g.7870C> g.9200G>C	'' g.42127941G>A, g.42126611C>G	c.1457G>C	p.Arg296Cys, p.Ser486Thr	No	0-0.1%
*12	No function	<u>rs5030862</u> , rs16947, rs1135840	<u>124G>A</u> , 2850C>T, 4180G>C	<u>124G>A</u> , 2851C>T, 4181G>C	<u>g.5143G>A</u> , g.7870 g.9200G>C	Do not have refere	ence	p.Gly42Arg, p.Arg296Cys, p.Ser486Thr	No	0-1.7%
*14	Decreased function	<u>rs5030865</u> , rs16947, rs1135840	<u>1758G>A</u> , 2850C>T, 4180G>C	<u>1759G>A</u> , 2851C>T, 4181G>C	<u>g.6778G>A</u> , g.7870 g.9200G>C	be promoted to Tie	er 1 if	<u>p.Gly169Arg,</u> p.Arg296Cys, p.Ser486Thr	Yes	0-0.3%
*15	No function	rs774671100	137_138insT	<u>137_138insT</u>	g.5156dup	reference material	s become	p.Leu47fs	Yes	0-0.6%
*21	No function	<u>rs72549352</u> , rs16947, rs1135840	<u>2579_2580insC</u> , 2850C>T, 4180G>C	<u>2580_2581insC</u> , 2851C>T, 4181G>C	g.7599dup, g.7870 g.9200G>C	available in the fut	c.1457G>C	<u>p.Arg269fs,</u> p.Arg296Cys, p.Ser486Thr	Yes	0-0.4%
*31	No function	<u>rs267608319,</u> rs16947, rs1135840	<u>4042G>A</u> , 2850C>T, 4180G>C	<u>4043G>A</u> , 2851C>T, 4181G>C	<u>g.9062G>A</u> , g.7870C> g.9200G>C	T, <u>g.42126749C>T</u> , g.42127941G>A, g.42126611C>G	<u>c.1319G>A</u> , c.886C>T, c.1457G>C	<u>p.Arg440His,</u> p.Arg296Cys, p.Ser486Thr	Yes	0-0.8%
_		**77540756	1863_1864ins	1864_1865ins	g.0075_0003	g.42120934_42120942AAAG	<u>c.514_522</u>	p.172_174FRP[3],		
*40	No function	<u>rs72549356</u> , rs28371706, rs16947, rs1135840	TTTCGCCCCTTTCGCC <u>CC</u> , 1023C>T, 2850C>T, 4180G>C	TTTCGCCCCTTTCGCCCC , 1022C>T, 2851C>T, 4181G>C	TTTCGCCCC[3], g.6041C>T, g.7870C> g.9200G>C	GGGCG[3], g.42129770G>A, T, g.42127941G>A, g.42126611C>G	<u>TTTCGCCCC[3],</u> c.320C>T, c.886C>T, c.1457G>C	p.Thr107lle, p.Arg296Cys, p.Ser486Thr	Yes	0-1.3%
		205 100 10			0070 0000	g.42127532 42127533dup,	1000 1000 1	p.Gln364fs,		
*42	No function	Meets stan	dard criteri	a for Tier 1,	but is defi	ned by an in-frai	me	p.Arg296Cys, p.Ser486Thr	No	0-0.5%
*49	Decreased	nsertion of	18 base pa	airs that is c	lifficult to d	letect; therefore,	assigned	p.Phe120lle, p.Pro34Ser.	No	0-1.1%
	tunction	o Tier 2 ba	sed on tec	hnical difficu	ulty		J. J	p.Ser486Thr		
*56	No function	rs1135840	<u>3201C>T</u> , 4180G>C	<u>3202C>T</u> , 4181G>C	g.8221C>T, g.9200G>	C g.42126611C>G	<u>c.1030C>T</u> , c.1457G>C	<u>p.Arg344Ter</u> , p.Ser486Thr	Yes	0-0.2%
*59	Decreased function	<u>rs79292917</u> , rs16947, rs1135840	<u>2939G>A</u> , 2850C>T, 4180G>C	<u>2940G>A</u> , 2851C>T, 4181G>C	<u>g.7959G>A</u> , g.7870C> g.9200G>C	T, <u>g.42127852C>T</u> , g.42127941G>A, g.42126611C>G	<u>c.975G>A</u> , c.886C>T, c.1457G>C	p.Pro325= (splicing defect), p.Arg296Cys, p.Ser486Thr	Yes	0-0.7%
Hybrid	no function	variable								

Tier 2 – Hybrid Alleles

 When one probe is used, differentiating between a duplication and hybrid is not possible; however, when 2 probes are used, this is feasible

However, for a CYP2D6-CYP2D7 hybrid (which is more common than a *13 CYP2D7-CYP2D6 hybrid), this may not be a problem if the probe is located in exon 9

CYP2D6 Detection rate

• Tier 1

≥78% of African-American~84% of European Caucasian~85% of East Asian

• Tier 2

≥80% African-American ~85% European Caucasian ~87% East Asian

Non wild-type variant only in calculation (does not include all possibly duplications)

AMP PGx Working Group TPMT/NUDT15

5th deliverable

The Journal of Molecular Diagnostics Volume 24, Issue 10, October 2022, Pages 1051-1063

Special article

TPMT and NUDT15 Genotyping Recommendations: A Joint Consensus Recommendation of the Association for Molecular Pathology, Clinical Pharmacogenetics Implementation Consortium, College of American Pathologists, Dutch Pharmacogenetics Working Group of the Royal Dutch Pharmacists Association, European Society for Pharmacogenomics and Personalized Therapy, and Pharmacogenomics Knowledgebase

Victoria M. Pratt *, [†] A ⊠, Larisa H. Cavallari *, [‡], Makenzie L. Fulmer *, [§], Andrea Gaedigk *, [¶], Houda Hachad *, [∥], Yuan Ji *, [§], Lisa V. Kalman *, **, Reynold C. Ly *, [†], Ann M. Moyer *, ^{††}, Stuart A. Scott *, ^{‡‡, §}, R.H.N. van Schaik *, [¶], ^Ⅲ, ***, Michelle Whirl-Carrillo *, ^{†††}, Karen E. Weck *, ^{‡‡‡, §}

AMP Guidelines for *TPMT/NUDT15* clinical testing – Tier 1

Allele	Allele Functional Status†	Core Variant(s) [∥]	RefSeqGene LRG Nomenclature	HGVS Genomic Nomenclature (GRCh38)	HGVS cDNA Nomenclature	HGVS protein Nomenclature	Reference Material Available	Multiethnic Allele Frequency (%)
TPMT*2	No Function	rs1800462	NG_012137.3: g.16420G>C	NC_000006.12: g.18143724C>G	NM_000367.5: c.238G>C	NP_000358.1: p.Ala80Pro	Yes‡	0-0.7
TPMT*3A	No Function	rs1800460, rs1142345	NG_012137.3: g.21147G>A, NG_012137.3: g.29457A>G	NC_000006.12: g.18138997C>T, NC_000006.12: g.18130687T>C	NM_000367.5: c.460G>A, NM_000367.5: c.719A>G	NP_000358.1: p.Ala154Thr, NP_000358.1: p.Tyr240Cys	Yes	0.03-4.2
TPMT*3B	No Function	rs1800460	NG_012137.3: g.21147G>A	NC_000006.12: g.18138997C>T	NM_000367.5: c.460G>A	NP_000358.1: p.Ala154Thr	Yes (*3A)	0-0.5
TPMT*3C	No Function	rs1142345	NG_012137.3: g.29457A>G	NC_000006.12: g.18130687T>C	NM_000367.5: c.719A>G	NP_000358.1: p.Tyr240Cys	Yes	0.6-5.3
NUDT15*3	No Function	rs116855232	NG_047021.1: g.13153C>T	NC_000013.11: g.48045719C>T	NM_018283.4: c.415C>T	NP_060753.1: p.Arg139Cys	Yes [‡]	0-6.8

U INDIANA UNIVERSITY

AMP Guidelines for *TPMT/NUDT15* clinical testing – Tier 2

Allele	Allele Functional Status†	Core Variant(s)	RefSeqGene LRG Nomenclature	HGVS Genomic Nomenclature (GRCh38)	HGVS cDNA Nomenclature	HGVS protein Nomenclature	Reference Material Available	Multiethnic Allele Frequency (%)
TPMT*11	No Function	rs72552738	NG_012137.3: g.20455G>A	NC_000006.12: g.18139689C>T	NM_000367.5: c.395G>A	NP_000358.1: p.Cys132Tyr	No	0-0.02
TPMT*29	No Function	rs267607275	NG_012137.3: g.11018T>C	NC_000006.12: g.18149126A>G	NM_000367.5: c.2T>C	NP_000358.1: p.Met1Thr	No	0-0.03
TPMT*42	Likely No Function	rs759836180	NG_012137.3: g.11111dup	NC_000006.12: g.18149034dup4	NM_000367.5: c.95dup	NP_000358.1: p.Trp33Valfs*26	No	0-0.11
NUDT15*2	No Function	rs746071566, rs116855232	NG_047021.1: g.5218GAGTCG[4], NG_047021.1: g.13153C>T	NC_000013.11: g.48037796_48037801du p, NC_000013.11: g.48045719C>T	NM_018283.4: c.50_55dup, NM_018283.4: c.415C>T	NP_060753.1: p.Gly17_Val18dup, NP_060753.1: p.Arg139Cys	Yes‡	0-3.7
NUDT15*4	Uncertain Function	rs147390019	NG_047021.1: g.13154G>A	NC_000013.11: g.48045720G>A	NM_018283.4: c.416G>A	NP_060753.1: p.Arg139His	Yes	0-1.8
NUDT15*6	Uncertain Function	rs746071566	NG_047021.1: g.5218GAGTCG[4]	NC_000013.11: g.48037796_48037801du p	NM_018283.4: c.50_55dup	NP_060753.1: p.Gly17_Val18dup	Yes [‡]	0-1.3
NUDT15*9	No Function	rs746071566	NG_047021.1: g.5218GAGTCG[2]	NC_000013.11: g.48037796_48037801del	NM_018283.4: c.50_55del	NP_060753.1: p.Gly17_Val18del	Yes [‡]	0-0.2
NUDT15*14	Likely No Function	rs777311140	NG_047021.1: g.5260_5261insCGGG	NC_000013.11: g.48037826_48037827ins CGGG	NM_018283.4: c.80_81insCGGG	NP_060753.1: p.Cys28Glyfs*28	No	0-0.6

AMP PGx Working Group Genotyping Recommendations

These recommendations are intended to:

- Promote standardization of PGx testing across different laboratories
- Inform clinical laboratory professionals when designing and validating clinical PGx assays
- Complement other clinical guidelines, such as those issued by CPIC, which primarily focus on the interpretation of genotyping results and therapeutic recommendations for specific drugs

Future work:

 Other PGx genes with clinical relevance planned/ in progress

Testing (r)evolution

Targeted

Whole "omic" approach

Risk Icon On Speedometer High Risk Meter Vector Stock Illustration Stock Illustration - Download Image Now - iStock (istockphoto.com) https://www.alamy.com/stock-photo-young-strong-woman-warrior-with-big-guns-in-dramatic-urban-night-scene-145283794.html Private Information

WHOLE "OMIC" APPROACH

https://www.alamy.com/stock-photo-young-strong-woman-warrior-with-big-guns-in-dramatic-urban-night-scene-145283794.html

Accelerating Technology & Plummeting Cost

	Whole-genome sequencing (WGS)	Exome sequencing
Cost	Still costly, but decreasing rapidly	Reduced cost is a tenth to a third of WGS
Technical	No capture step, automatable	Capture step, technical bias
Variation	Uncovers all genetic and and genomic variation (SNVs and CNVs) Discovery of functional coding and noncoding variation ~3.5 million variants	Focuses on ~1% of the genome Limited to coding and splice-site variants in annotated genes ~20,000 variants
Disease	Suitable for mendelian and complex trait gene identification, as well as sporadic phenotypes caused by <i>de novo</i> SNVs or CNVs	Good for highly penetrant mendelian disease gene identification

Figure 3

A comparison of the weaknesses and strengths of whole-genome sequencing (WGS) and exome sequencing approaches for disease-gene identification. Abbreviations: CNVs, copy-number variants; SNVs, simple nucleotide variants.

Gonzaga-Jauregui, Lupski and Gibbs, Ann Rev Med 63: 35-61, 2012. Private Information

The Devil is in the Details

NGS (short read) HAS PROBLEMS WITH

- Regions of high sequence homology
- Repeat expansions
- Large in/dels, CNVs and other structural variants

http://www.trizic.com/the-devilis-in-the-details-how-preparedare-you-for-a-presence-exam/

LESS PROBLEMATIC FOR GENE PANELS

- Testing labs typically have clinical domain expertise
- Contents typically highly curated + well understood
- Add-on tests typically available for difficult genes

KNOWLEDGE DOES NOT SCALE EASILY

• Sequencing ≠ understanding

Courtesy: Birgit Funke

HOW MANY HOURS DO MOLECULAR PROFESSIONALS SPEND ANALYZING, INTERPRETING, AND REPORTING MOLECULAR TESTS FOR ONCOLOGY?

https://www.amp.org/AMP/assets/File/advocacy/AMP_MDx_Interpretation_Quant_Survey_Report.pdf?pass=86

CANCER

Cancer: Tumor vs. Normal

Lee et al. Nature 2010

Exome Sequencing in Prostate Cancer

Barbieri et al. Nature Genetics 2012

Liquid biopsy

Liquid Biopsy for Cancer: Review and Implications

Mechanisms of translocation of tumor cells and cellular components into the bloodstream

Underwood JJ et al. Published Online: November 19, 2019 https://doi.org/10.1148/radiol.2019182584

- Liquid biopsy is a noninvasive diagnostic approach involving the isolation of circulating tumor markers such as cell-free nucleic acids and circulating tumor cells from peripheral blood
- The tumor microenvironment hosts growing and apoptotic cancer cells that release biomarkers into the circulation, which can be collected for the purpose of analyzing tumor biology
- Circulating biomarkers including circulating tumor DNA and circulating tumor cells can serve as noninvasive tests for screening, diagnosis, prognosis, and therapy guidance for many solid tumors. Methods are being developed to detect and characterize these markers

Future

- Polygenic risk score tests
- Whole genome + Whole transcriptome
- Methylome
- ???

Is more better?

My thoughts....
 Sometimes yes
 Sometimes no

Conclusions

- Genetics is continually evolving field
- Some resources are available to help with understanding level of evidence for genes in panels

Our understanding is constantly evolving

Questions

