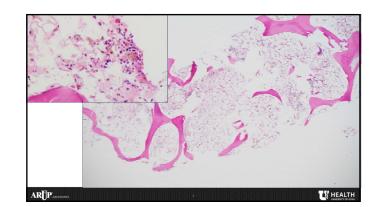

HYPOCELLULAR BONE MARROW... WHAT'S NEXT?


Anton V Rets, M.D., Ph.D.

ARTPLACEARCERS

Assistant Professor of Pathology, University of Utah School of Medicine Medical Director, ARUP Laboratories

Ancillary studies

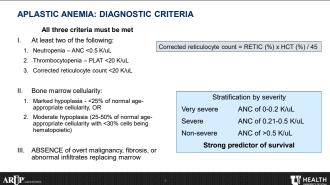
- Flow cytometry: unremarkable
- Karyotype: no metaphase cells

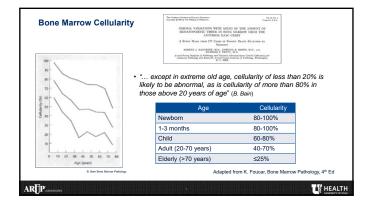
DIAGNOSIS:

Markedly hypocellular marrow with no morphologic or flow cytometric evidence of malignancy

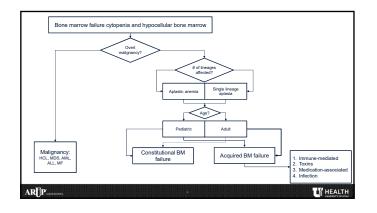
Is there anything else to be done?

ARFP

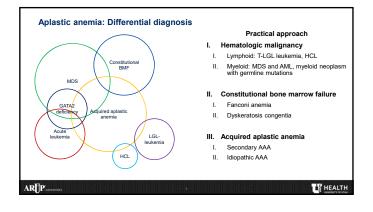

HEALTH

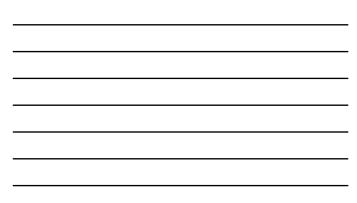

Definitions

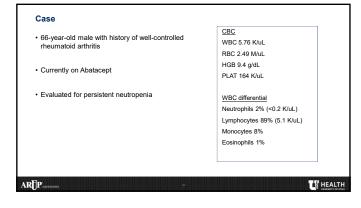
- Bone marrow failure (BMF) sustained inability of the bone marrow to produce adequate numbers of blood forming elements
- -Unilineage aplasia (red cell aplasia, neutropenia, thrombocytopenia)
- -Trilineage aplasia = aplastic anemia
- Aplastic anemia (AA) multiple cytopenias with TRILINEAGE bone marrow failure in absence of secondary bone marrow replacement process (neoplasia, reticulin fibrosis, etc.)
- -Constitutional (constitutional BMF)
- -Acquired AA

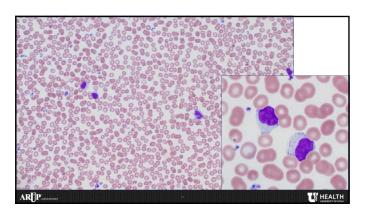

ARTPLACEARCE

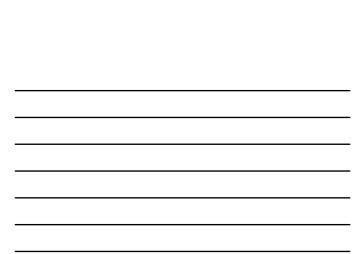
- Secondary
- · Idiopathic separate entity

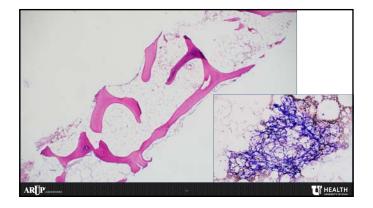












Ancillary studies

Flow cytometry -Large population of LGL-like T-cells: CD2 weaker than normal, CD3+, CD4-/CD8+, CD5 weaker than normal

- T-cell clonality by PCR: monoclonal pattern
- Karyotype: 46,XY [5]

ARTPLACEACORS

HEALTH

Diagnostic possibilities

Issues to be addressed: . Bone marrow failure

2. Large population of monoclonal immunophenotypically atypical T-LGLs

Differential diagnosis 1. T-LGL leukemia

- 2. Reactive/autoimmune expansion of T-LGLs
- 3. Medication-associated or immune-mediated neutropenia

FINAL DIAGNOSIS: T-LGL LEUKEMIA

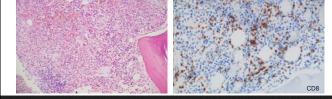
ARTPLACEACCES

HEALTH

T-LGL leukemia

- · Disease of adults: most cases occur in individuals of 45-75 years old
- Persistent (>6 months) unexplained increase in LGLs, usually >2 K/uL
- Presentation
- -severe neutropenia is common
- -thrombocytopenia is rare
- common association with rheumatoid arthritis, hypergammaglobulinemia, autoantibodies

· Indolent non-progressive disorder


ARTPLACEACORES

T-LGL leukemia: findings

Bone marrow

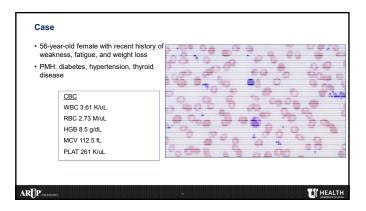
-slightly hypercellular (50%), but can also be normo- and hypocellular (50% cases) -interstitial/intrasinusoidal increase in LGLs which can be difficult to appreciate on H&E

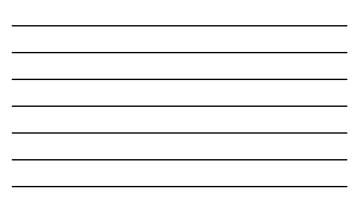
- non-neoplastic B-cell-rich lymphoid aggregates are common

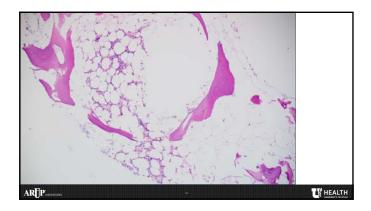
ARTPLANMANES

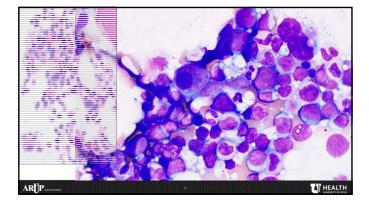
HEALTH

T-LGL leukemia: findings

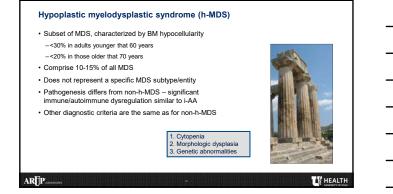

Flow cytometry

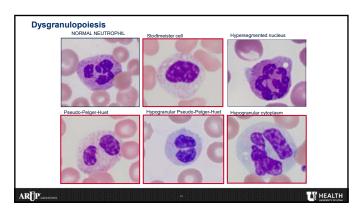

ARTPLASCENCE

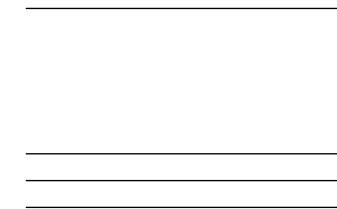

 In most cases, the immunophenotype is of mature alpha/beta-positive cytotoxic T-cells: CD2+, CD3+, CD4-/CD8+, CD57+, frequently CD16+ and CD56+
 Common downregulation/loss of CD5 and/or CD7

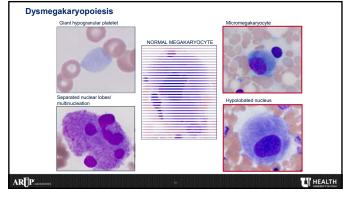

TCR clonality studies positive

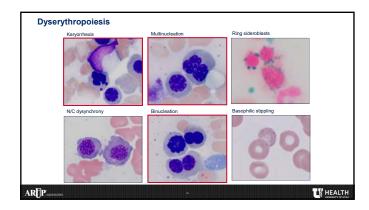
Caveat: the presence of oligoclonal/monoclonal T-cell population(s) should always be interpreted in a clinical and morphologic context. Positive clonality does not mean lymphoma.

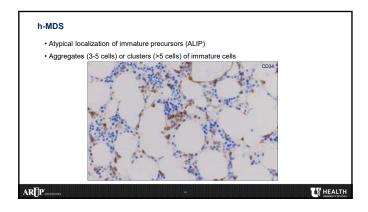


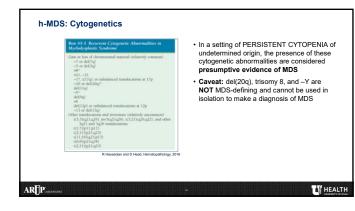

Ancillary studies


- Flow cytometry: unremarkable
- MDS FISH: 5q31 (EGR1) deletion detected
- Karyotype: 46,XX,del(5)(q13q33) [20]
- NGS:
- TET2 p.Ser214fs, VAF of 31.9% IDH2 p.Arg140Leu, VAF of 2.2% SF3B1 p.Arg625Cys, VAF of 2.1% No TP53 mutations


FINAL DIAGNOSIS: MDS with isolated del(5q)


ARTPLACEACORES



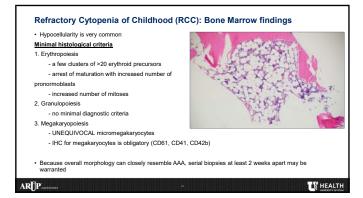


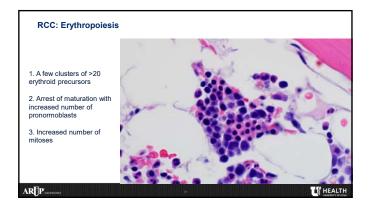
h-MDS Flow Cytometry

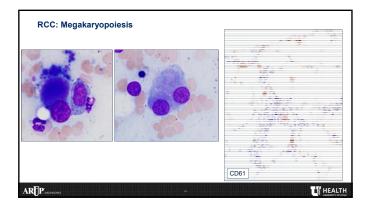
- Although not necessary for diagnosis of MDS, but may be helpful • Increased CD34+ blasts
- Abnormal maturation patterns
 -altered CD13 and/or CD16 expression
- Aberrant immunoprofile
 -CD56 and/or CD7 expression on granulocytes, monocytes, or blasts
- Decreased side scatter on granulocytes

MDS: Molecular Picture RNA splicing machinery SF381, SRSF2, ZRSR2, and U2AF1 genes Most common mutations in MDS Epigenetic machinery TET2, DNMT3A, IDH1/2, EZH2, ASXL1 Second most common mutations in MDS DNA damage response TP53 Transcriptional regulation RUNX1, BCOR, ETV6 Signal transduction CBL, NRAS, JAK2

Pediatric MDS A very uncommon condition Likely to present with neutropenia and thrombocytopenia, and not anemia Bone arrow hypocellularity is more commonly observed MDS-EB in children usually has relatively stable slowly-progressing course

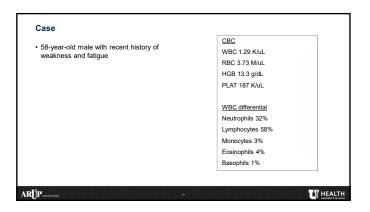

10

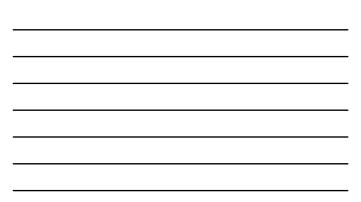

Refractory Cytopenia of Childhood (RCC)

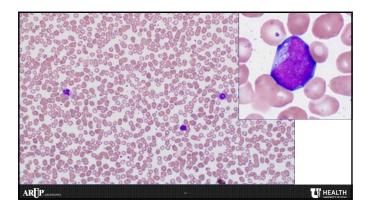

- · Provisional entity
- Clonal stem cell defect
- Most common type of MDS in children (50%-90% of all MDS in children)
- · Diagnostic criteria:

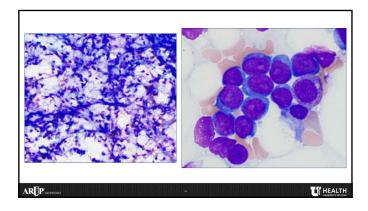
ARFPLASORATORES

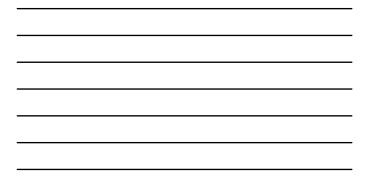
- 1. Persistent cytopenia: neutropenia and thrombocytopenia are most common
- 2. No excess blasts: <5% on the BM AND <2% in PB
- 3. Dysplasia: ≥2 lineages AND ≥10% cells in each affected lineage
- · 80% cases demonstrate hypocellular marrow

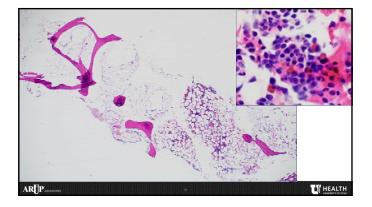









	RCC	Constitutional BMF	AAA
Peripheral cytopenia	Milder than in AAA		Significant
Erythroid islands	Significant, >20 cells Patchy foci Abnormal localization Increased immature erythroid precursors Increased mitoases Significant dyserythropoiesis		Rare, 10 cells or less Adequate maturation No significant dyserythropolesis
Myeloid cells	Markedly decreased (more severely than in AAA) Left shifted Dysgranulopoiesis	Significant overlap between RCC and AAA	Markedly decreased Adequate maturation No significant dyspoiesis
Megakaryopoiesis	Markedly decreased Significant dysplasia with micromegakaryocytes		Markedly decreased No significant dysplasia, no micromegakaryocytes No abnormal localization
CD34-positive blasts	Not increased No clusters/ALIP		Not increased
Caveats			After immunosuppressive therapy, the histologic pattern cannot be reliably distinguished from RCC
Common cytogenetic/molecular findings	Monosomy 7 (8%-48%) – higher risk of progression Trisomy 8		



Ancillary studies Flow cytometry CD34+ myeloblasts comprise 28% of the leukocytes AML/MDS FISH: negative Karyotype: 46,XY [20] NGS: negative FINAL DIAGNOSIS: ACUTE MYELOID LEUKEMIA, NOS ARTPResent

Myeloid neoplasms with germline GATA2 mutation • Germline mutation in GATA2 gene

- AD disorder presenting in late childhood, adolescence, and adulthood
- Spectrum of overlapping phenotypes:

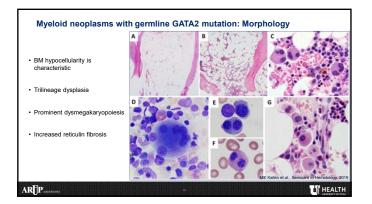
Hypoplastic Acute Leukemia

-occur mostly in pediatric patients

· Circulating blasts are uncommon, or rare if present

· Infrequent presentation

Hypoplastic ALL
 -more common

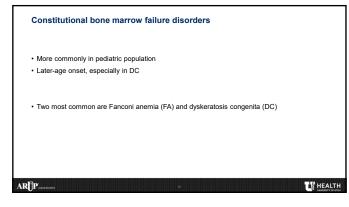

 Hypoplasitc AML – rare


ARTPLACEATORES

-mostly in elderly adults

- DCML (dendritic cells, monocytes, B-cell, and NK-cells) deficiency - MonoMAC syndrome: monocytopenia and non-TB mycobacterial infection
- -Familial MDS or AML
- -pulmonary proteinosis, warts, and sensorineural hearing loss
- 70% of affected individuals develop MDS/AML at median age of 29 yo
- ARTPLACEACORES

HEALTH

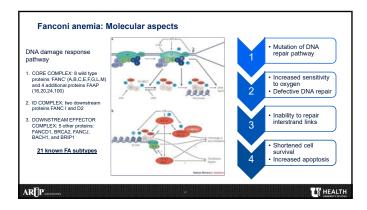


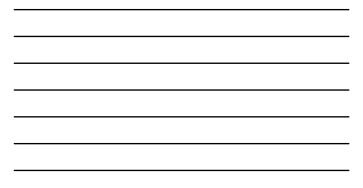
Myeloid neoplasms with germline GATA2 mutation: other clues

· Flow cytometry shows

- -Abnormal granulocytic maturation - Disproportionately and markedly reduced monocytes, B-cells (including hematogones), and NK-cells
- useful finding to distinguish from AAA
- -Plasma cells may be increased and abnormally express CD56
- Commonly increased T-cell, particularly LGL T-cells; can be immunophentypically atypical
- Most common cytogenetic abnormalities are monosomy 7 and trisomy 8

ARTPLACEACORES

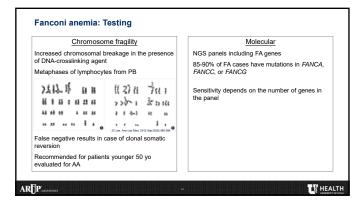

Fanconi anemia


Genomic instability disorder characterized by

- chromosomal fragility and breakage,
- progressive BM failure, peripheral cytopenias,
- -developmental anomalies, and
- a strong propensity for hematologic and solid tumor cancers:
 Median patient age 16 yo
- Crude risk of cancer: acute leukemia 5-10%, MDS 5%, solid tumors (SSC of head/neck and upper GI) 5-10%
- Prevalence 1-5 per 1,000,000
- All racial groups, Spanish gypsys carrier frequency 1 in 64-70
- Median age at diagnosis is 6.5 years, but can be 0-49 years

AR PLANCHAUGHES

HEALTH



Fanconi anemia: Findings

- Characteristic congenital physical anomalies (but only 70% of patients) : skin pigmentation and café-au-lait spots 40%, short stature 40%, upper limb anomalies 35%, hypogonadism 27%, eye, eyelid or epicanthal anomalies 20%
- Gradual onset of BM failure in the 1st decade of life

 Initial macrocytosis and thrombocytopenia, followed by neutropenia and anemia
 Initially erythroid hyperplasia, +/- dysplasia, may be similar to pediatric MDS
 Progression results in hypocellularity

Inherited multisystem disorder of the mucocutaneous and hematopoietic systems and a wide variety of other somatic abnormalities

Part of 'TELOMERE BIOLOGY DISORDERS'

Incidence 4 per 1,000,000/year

 Classic triad (full triad present in less than ½ of patients) – nail dystrophy

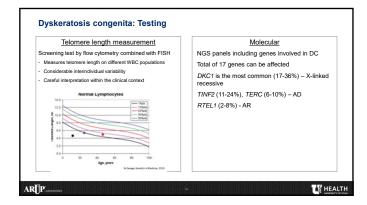
-lacy reticular pigmentation of neck and upper chest

Bone marrow failure in 90%

· 10-15% patients will develop cancer

-MDS/AML very common (40% cumulative risk at 50 yo), SSC/adenocarcinoma of oropharynx and upper GI

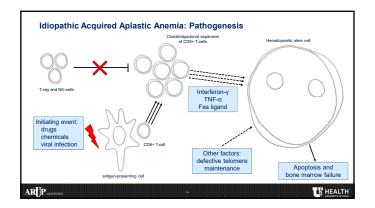
ARTPLASCEATORES



Dyskeratosis congenita: Findings

- Usually during childhood, but late onset is not uncommon
- Skin changes appear first, followed by mucosal changes and BM failure
- Other manifestations and important family history: palmar hyperhydrosis, hair loss, eye abnormalities, dental decay, osteoporosis, hypoplastic testes, urethral stenosis, idiopathic pulmonary fibrosis, liver disease

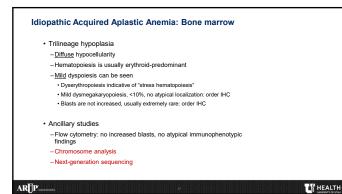
ARTPLACEACEE

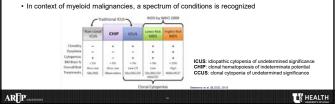

HEALTH

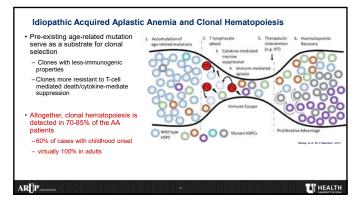


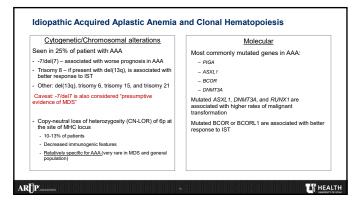
Idiopathic Acquired Aplastic Anemia

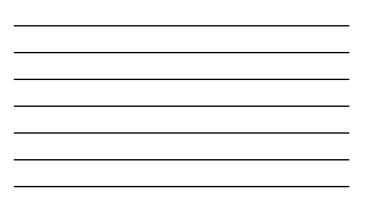
- Non-neoplastic bone marrow failure caused by an autoimmune T-lymphocyte-mediated attack on hematopoietic stem and progenitor cells [NS Young, Am Soc Hematol Educ Program, 2013]
- Incidence
- 2-3 per million/year in North America and Europe 4-8 per million/year in Asia
- Sex predilection M:F = 1:1
- Age of onset: bimodal Young adulthood – 20 yo Elderly – 60 yo


ARTPLASORATORES

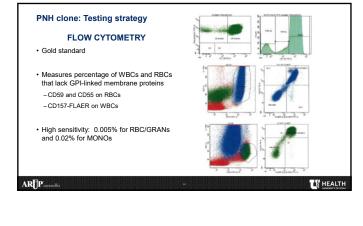

Idiopathic Acquired Aplastic Anemia: Clinical Presentation
Relatively recent onset of cytopenia-related features
-anemia-related symptoms are very common
-platelet type bleeding and petechiae
-infections due to neutropenia are not common
Close attention to possible dysmorphic features


ARFPLASSER




Idiopathic Acquired Aplastic Anemia and Clonal Hematopoiesis

- Well known linkage between AAA and clonal hematopoiesis
- · Acquisition of mutations in hematopoietic cells is a part of aging
- -10% of individuals 65 yo and older have clonal hematopoiesis $_{\mbox{\tiny IGM}}$ et al,. NEJM, 2014] -By molecular techniques most commonly mutated genes are DNMT3A, TET2, and ASXL1 -By chromosome analysis most common alterations are loss of chromosome Y



PNH clones

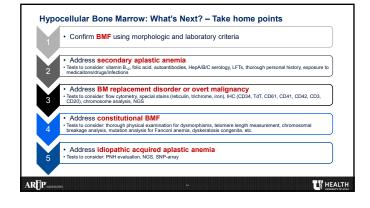
ARTPLACEARCERS

- PNH clones are present in 50% of AAA cases
- Somatic mutation in PIG-A gene (Xp) resulting in abnormal GPI protein processing and expression
- Confers survival and proliferative advantage to the mutated cells in context of AAA
- Usually small size: >0.1% on granulocytes and >0.2% on RBC; very rarely >10%
- Associated with better prognosis in AAA

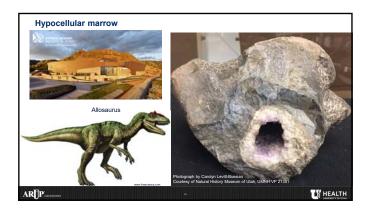
A .	Division (21 a	com	ourle himstepäätige normale
-			Biomche Spidupe
	Main USP-Galassier PT	Cuta Mi-1 X-1 Okha-11	h southe following with goal 1979.
-	F		Romche løskøør
-		N Gendron, et al. 1	Sang Thrombose Valeneeux, 2018

Back to the case

- · 26-year-old male presents with septic shock SNP-microarray: male complement (XY), no DNA copy number changes or copy-neutral long stretches of homozygosity
 T-cell clonality: not detected
- Myeloid NGS panel (57 genes): no mutations detected
- PNH testing: small subclinical PNH clone
 FA chromosome breakage: negative
- + Telomere length: shortening at $10^{\rm th}\, {\rm percentile}$
- DC panel: negative


DIAGNOSIS:

Markedly hypocellular marrow with no morphologic or flow cytometric evidence of malignancy Most consistent with acquired aplastic anemia


Follow-up: the patient underwent HSCT and is currently doing well

ARTPLASCHARCHES

4

