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Where I am coming from

Professor of Medicine @ SOM Chief Data Scientist @ SHC
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Lead … the team bringing predictive algorithms 
and AI into the healthcare environment.

Build … the delivery science to assess usefulness, 
reliability and fairness of AI projects. 

Serve … the organization with cross-functional 
leadership to effectively use data science.

Represent … Stanford Health Care to foster our 
reputation as a world leader data science.

Research … ways to bring AI into clinical use safely, 
ethically and cost effectively.

Teach … data science in medicine for the Biomedical 
Informatics (BMI), Masters in Clinical 
Information Management (MCIM), the Clinical 
Informatics, and two Stanford online programs

Consult … the organization in shaping the Stanford 
Medicine data science ecosystem for 
clinical and translational research
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We use data from patient timelines to build models
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Models classify, predict, or recommend in service of the 
science, practice or delivery of care
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Models of varying complexity:

• Logistic Regression
• Random Forest
• Deep Neural Network
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The typical consultation request

Vol. 2 No. 10 | October 2021
NEJM Catalyst Innovations in Care Delivery 2021; 10
https://doi-org.laneproxy.stanford.edu/10.1056/CAT.21.0224
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Why supporting such consultations matters
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“During the 7.5 days, 1188 decisions (158/day) were 
made. Almost 80% of decisions were deemed by the 

physicians to have no basis in any prior published 
data an < 3% of decisions were based on a study 

specific to the question at hand.”
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Spin out – Atropos Health, in 2021

7www.atroposhealth.com www.tinyurl.com/HBR-gapVol. 2 No. 10 | October 2021
NEJM Catalyst Innovations in Care Delivery 2021; 10
https://doi-org.laneproxy.stanford.edu/10.1056/CAT.21.0224
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A typical predict-n-act set up
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NEJM Catalyst Innovations in Care Delivery 2022; 4
https://doi.org/10.1056/CAT.21.0457
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Examples

• Predicting mortality to improve advance care planning

• Classifying ischemic vs. hemorrhagic stroke for prioritizing air ambulance transport

• Predicting long term outcomes after pulmonary embolism using imaging and EHR data

• Multimodal models for recurrence risk in surgically resectable colorectal cancer, to guide adjuvant therapy

• Opportunistic ASCVD risk estimation, using CT images and EMR data

• Predicting no-shows for providing transportation support

• Classifying presence of undiagnosed disease

• Familial hypercholesterolemia – to order sequencing

• Peripheral artery disease – to order ABI measurement

• Predicting length of stay, readmissions, bed-demand etc. …

9
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M odels of varying com plexity:

• Logistic Regression
• Random  Forest
• Deep Neural Netw ork

Model stratifies by risk; value comes from taking 
responsive action

10

If (Risk > Th.)

then (do = X)

Decide whether 
to act

Guide choice 
of how to act
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Feb 2016

Mar 2022

Mar 2020

Jan 2019

Oct 2015

Feb 2017

1
Needs Statement
That specifies the problem a model is 
expected to solve.

2
Use case definition
Given a prediction, what action would we 
take?

3
Model formulation f: X → Y
Use an existing model or a new one.

4
Model dev: Performance
How do we get the best f: X → Y?

5
Model dev: Fairness
Is f: X → Y fair?

6
IT feasibility
How do we get the data in time to make 
predictions?

7
[Workflow  / Org / App Integration]
How do we get the model output back into 
care workflow?

8
Utility assessment
Given the cost of action, is there net 
benefit?

9
Workload analysis
Given ‘work capacity’, what net-benefit can 
we realize?

10
Monitoring (workflow, model)
Making predictions and monitoring the 
model as well as workflow.

11
Prospective evaluation
Does the system have the impact we 
hoped?

12
Ethical concerns
Surfaced by stakeholder interviews

13
Business case
Enterprise value given the model, the 
intervention, and patient mix

A framework for making 
predictive models useful 
in practice

Fig. 4: Development and evaluation of a predictive model 
throughout its life cycle

Apr 2023

Jung et al 2020. doi:10.1093/jamia/ocaa318
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There is an interplay 
among models, capacity, 
and actions we take

AI-guided 
work

The 
Model

The 
action

Policy & 
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Recommendations for “building good models”

13Jonathan Lu et al. “Assessment of Adherence to Reporting Guidelines by Commonly Used Clinical Prediction Models.” 
doi:10.1001/jamanetworkopen.2022.27779
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ROC, Utility, and indifference lines
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Act on every case

Take no actions

Positive (rp=5%) Negative (rn=95%)

Positive utp* rp*TPR ufp* rn*FPR

Negative ufn* rp*(1-TPR) utn* rn*(1-FPR)

E(u) = utp* rp*TPR + ufn* rp*(1-TPR) + ufp* rn*FPR + utn* rn*(1-FPR) 

E(u) = utp* rp*1 + ufn* rp*(1-1) + ufp* rn* 1 + utn* rn*(1- 1) 

E(u) = utp* rp + ufp* rn

the rate of negatives x the cost of misclassifying a negative 

the rate of positives x cost of misclassifying a positive 
Slope =

Current rule
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Focus on achievable utility, given work capacity

Building a model, then separately doing a utility analysis, and later facing work constraints is suboptimal
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A model’s ROI is often challenging

16
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Data Science Team at SHC

17https://dsatshc.stanford.edu/

Thought leadership for 
Responsible AI in Healthcare.

01
Ensure that we create FURM - 
Fair, Useful, Reliable Models.

02
Processes and infrastructure 

for an “AI ready” organization.

03
Identify and execute, 3-5 

projects with enterprise value.
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FURM Assessment
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We continue to study the
interplay of models, 
work capacity, and actions

AI-guided 
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We have developed 
a way to assess if we
are creating Fair, Useful, 
Reliable Models
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You will need processes
as well as infrastructure 
for being “AI ready”

20
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Governance is crucial 
for enterprise-wide 
alignment
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The state of AI at Stanford Healthcare

22

Administrative
Patient 

Engagement
Quality / Clinical 
Decision Support

Clinician 
Efficiency

30+ Vendor Applications in Production Using AI
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A Roadmap To Welcoming Health Care Innovation
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Readout R&D Clinical Business

1. Discovery
(pilots, explorations)

technical feasibility and 
user acceptance

2. Development
(deployment, strategic project)

proof of meeting intent 
of the innovation such 
as access, quality, or 
productivity gain

3. Dissemination
(enterprise project, scaling 
deployment, ROI study)

refine the technology as 
well as optimize the 
business model

Stages per 
http://goto.stanford.edu/innovation
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Scaling beyond Stanford Healthcare

24
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Providing guidelines for the responsible use of AI 
in healthcare

25



Private Information

A Nationwide Network of Health AI Assurance 
Laboratories
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Generative AI changes the framework

27
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Language models 101

28

Language model

Training data

Large language model
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EHR “Language”: Visit{R634, 999214} |  Rx {308416} | Visit{I63, R69} | …

Structured EHR data comprise a “language”

29
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Two ways to build “language” models using the EHR

30

“documents”

“timelines”

https://tinyurl.com/shaky-foundations

“chat” and 
“summarization”

Forecast what is 
going to happen
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Foundation models for Electronic Medical Records 

CLMBR: Clinical language 
modeling-based representations [1]

• 3.5 to 19% increase AUROC of binary tasks
• Classifiers decay less as time passes [2]

• Classifiers transfer better across subgroups [3]

• Classifiers are portable across hospitals [4]

2021

MOTOR: Many Outcome Time 
Oriented Representations [5]

• First time-to-event foundation model
• Better performance over long time horizons
• 8x faster training
• 95% less training data

2023

31

https://github.com/som-shahlab/femr/
 for large-scale, self-supervised learning using electronic health records
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Clinical Language Models

#1: Flashy headlines over-hype memorization #2: Tuning for medical tasks is limited

32
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Ensuring Useful Adoption of Generative 
AI in Healthcare

33
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Foundation models transcribe, summarize, or create in 
service of the science, practice or delivery of care

Transcribe
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…
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Contrasting traditional vs. foundation models

Traditional Models Foundation Models

Deployment Top-down Top-down OR Bottom-up

Cost Predictable Unpredictable

Value assessment Well-understood Unclear how to measure

Capabilities Narrow, predefined Used for tasks the model is never 
trained for

Output Well-defined Emergent, can have ‘hallucinations’

Example Predict which patient with renal 
injury will progress to dialysis

Write a response to a patient 
message

35
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Efficiency, effectiveness, and productivity

36

𝐏𝐫𝐨𝐝𝐮𝐜𝐭𝐢𝐯𝐢𝐭𝐲 =
𝐎𝐮𝐭𝐩𝐮𝐭

𝐈𝐧𝐩𝐮𝐭

Efficiency =
Resource planned 

Resources used

Effectiveness =
 Actual output 

Expected output

Doing the same 
with less

Doing more with 
the same
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We need to focus 
on defining and 
verifying benefits
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