Shaping the Responsible Adoption of AI in Healthcare

Nigam Shah Chief Data Scientist, Stanford Healthcare Professor of Medicine, Stanford University

Stanford MEDICINE

Where I am coming from

Professor of Medicine @ SOM				
Research	ways to bring AI into clinical use safely, ethically and cost effectively.			
Teach	data science in medicine for the Biomedical Informatics (BMI), Masters in Clinical Information Management (MCIM), the Clinical Informatics, and two Stanford online programs			
Consult	the organization in shaping the Stanford Medicine data science ecosystem for clinical and translational research			

Chief Data Scientist @ SHC

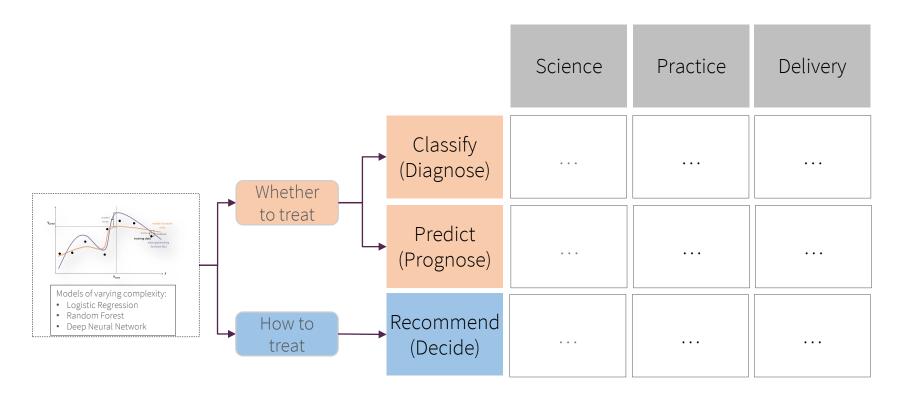
Lead	the team bringing predictive algorithms and AI into the healthcare environment.
Build	the delivery science to assess usefulness, reliability and fairness of AI projects.
Serve	the organization with cross-functional
Jerve	leadership to effectively use data science.

We use data from patient timelines to build models

ID TYPES Subject ID	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
Hospital admission ID	[93255] [60346]	[31241]	[86922]
ICU stay ID	[75087] [15784]	[90817]	[74483] [25658]
Case ID waveformrecord number numericrecord number	[a24098] [a24098n]	[a10984] [a47822] [a47822n] [a18729n]	[a53703] [a30008] [a53703n] [a30008n]
DATA TYPES			
in waveform record Pressure Plethysmogram Respiration			
in numerics record ABP Cardiac output HR			···
in clinical record in clinical record			
_			

Private

Models classify, predict, or recommend in service of the science, practice or delivery of care



The typical consultation request

Why supporting such consultations matters

Deciding without data

Jeffrey R Darst ¹, Jane W Newburger, Stephen Resch, Rahul H Rathod, James E Lock

Affiliations + expand

PMID: 20653700 PMCID: PMC4283550 DOI: 10.1111/j.1747-0803.2010.00433.x
Paperpile
Free PMC article

"During the 7.5 days, 1188 decisions (158/day) were made. Almost 80% of decisions were deemed by the physicians to have no basis in any prior published data an < 3% of decisions were based on a study specific to the question at hand."

Spin out – Atropos Health, in 2021

്ര **ATROPOS**HEALTH

Closing the Evidence Gap has Never Been Easier

Translate medical data into answers as easily as pressing a green button.

Learn How

www.atroposhealth.com

How Medical Records Can Close the Information Gap in Patient Care

by Nigam Shah and John D. Halamka

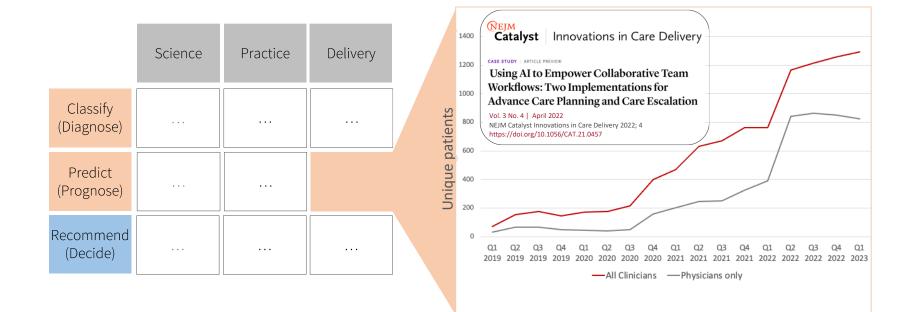
May 17, 2023

Benjamin Rondel/Getty Images

Summary. In dealing with many cases, doctors lack comparative real-time evidence and are forced to make decisions in spite of unknown variables that can dramatically alter outcomes. Such evidence gaps happen every day, particularly for patients with multiple conditions,... more

www.tinyurl.com/HBR-gap

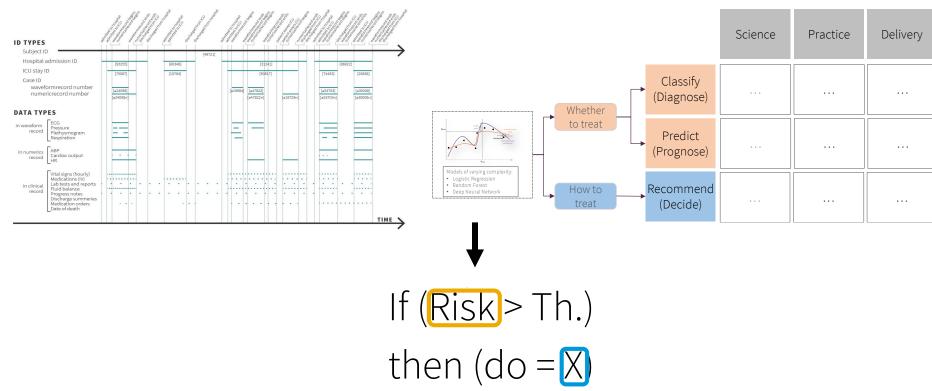
A typical predict-n-act set up



Examples

- Predicting mortality to improve advance care planning
- Classifying ischemic vs. hemorrhagic stroke for prioritizing air ambulance transport
- Predicting long term outcomes after pulmonary embolism using imaging and EHR data
- Multimodal models for recurrence risk in surgically resectable colorectal cancer, to guide adjuvant therapy
- Opportunistic ASCVD risk estimation, using CT images and EMR data
- Predicting no-shows for providing transportation support
- Classifying presence of undiagnosed disease
 - Familial hypercholesterolemia to order sequencing
 - Peripheral artery disease to order ABI measurement
- Predicting length of stay, readmissions, bed-demand etc. ...

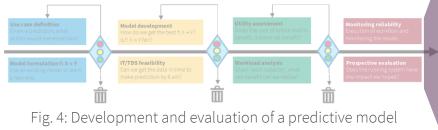
Model stratifies by risk; value comes from taking responsive action



Private Information

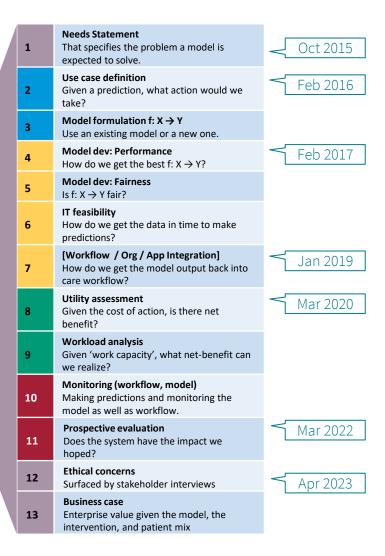
10

A framework for making predictive models useful in practice

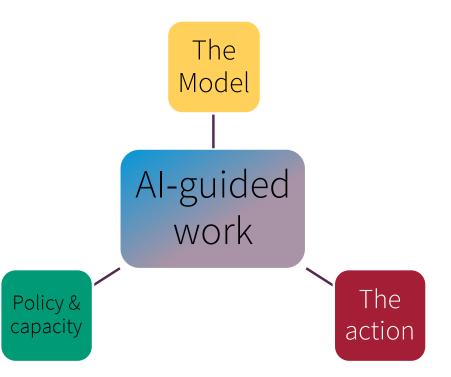


throughout its life cycle

Jung et al 2020. doi:10.1093/jamia/ocaa318



There is an interplay among models, capacity, and actions we take



Viewpoint

August 8, 2019

Making Machine Learning Models Clinically Useful

Nigam H. Shah, MD, PhD¹; Arnold Milstein, MD, MPH²; Steven C. Bagley, PhD³

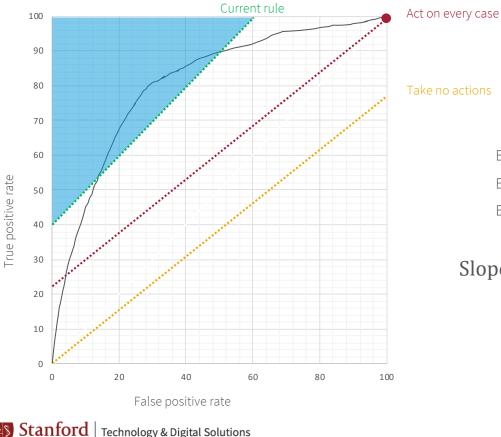
 \gg Author Affiliations | Article Information

Recommendations for "building good models"

Model Reporting Guideline	Use Case	Model Formulation	Model Dev.	Model Dev: Fairness	Practical Feasibility	Utility Assessment	Deployment Design	Execution of Workflow	Monitoring of model	Prospective Evaluation
Model Cards	8	5	29	9	1	0	0	0	0	0
Model Facts Labels	10	7	9	0	1	1	0	0	2	1
Guidelines	7	6	31	1	0	1	0	0	1	0
MI-CLAIM	4	3	29	3	0	1	0	0	0	1
MINIMAR	4	4	18	5	0	0	0	0	0	0
TRIPOD	7	9	53	1	0	3	0	0	3	2
CONSORT-AI	10	3	23	6	1	0	0	0	2	19
SPIRIT-AI	9	3	17	1	2	0	0	0	2	18
Trust and Value	4	0	9	0	2	1	0	0	4	2
ML Test Score	0	0	12	4	1	0	0	2	17	0
Risk	2	4	24	0	0	1	0	0	2	6
STARD	8	2	37	6	0	1	0	0	0	0
ABCD	1	3	27	0	0	1	0	0	0	0
CHARMS	5	9	42	1	2	0	0	0	1	4
PROBAST	4	6	41	0	1	1	0	0	1	0
Total	14	14	104	10	5	4	0	2	19	25

Jonathan Lu et al. "Assessment of Adherence to Reporting Guidelines by Commonly Used Clinical Prediction Models." doi:10.1001/jamanetworkopen.2022.27779

ROC, Utility, and indifference lines



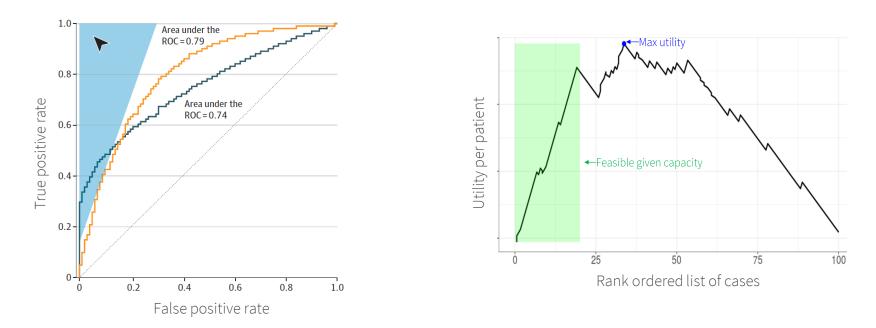
Stanford Health Care and School of Medicine

	Positive (r _p =5%)	Negative (r _n =95%)
Positive	u _{tp} * r _p *TPR	u _{fp} * r _n *FPR
Negative	u _{fn} * r _p *(1-TPR)	u _{tn} * r _n *(1-FPR)

 $E(u) = u_{tp} * r_p * TPR + u_{fn} * r_p * (1-TPR) + u_{fp} * r_n * FPR + u_{tn} * r_n * (1-FPR)$ $E(u) = u_{tp}^{*} r_{p}^{*} \mathbf{1} + u_{fn}^{*} r_{p}^{*} (1-\mathbf{1}) + u_{fp}^{*} r_{n}^{*} \mathbf{1} + u_{tn}^{*} r_{n}^{*} (1-\mathbf{1})$ $E(u) = u_{tp} * r_{p} + u_{fp} * r_{n}$

 $Slope = \frac{\text{the rate of negatives x the cost of misclassifying a negative}}{\text{the rate of positives x cost of misclassifying a positive}}$

Focus on achievable utility, given work capacity

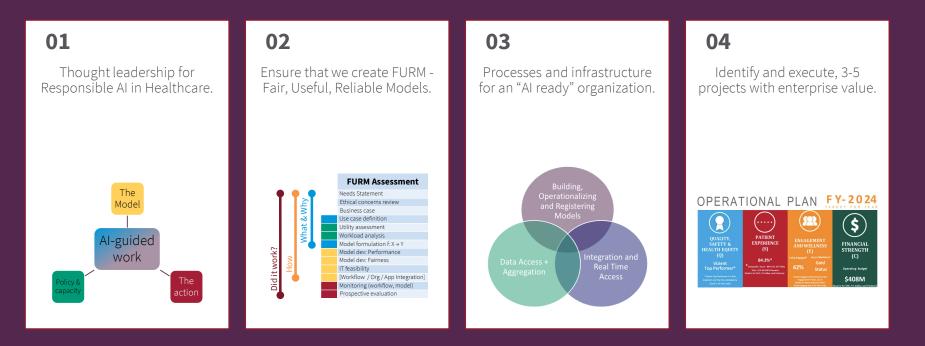


Building a model, then separately doing a utility analysis, and later facing work constraints is suboptimal

A model's ROI is often challenging

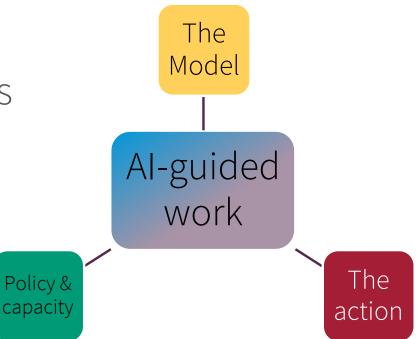
Cost to Build & Deploy			Cost for the Model-guided Wor	
Proportional cost of shared infrastructure			Cost to design the clinical workflow	
Data warehouse cost		45,000.00	One time workflow design cost	20,000.00
Cost to prepare data to train model			Cost for clinical integratioon	
Data pull and label definition	8	19,230.77	Application integraction cost	30,000.00
Verify clean labels w/SME	26	12,500.00	Execution costs for a flagged case	
			Procedure costs	250.00
Cost to learn / validate / evaluate the	e model		Laboratory testing	1,500.00
Hardware cost		5,000.00	Clinician costs	240.38
Data scientist costs	4	19,230.77	Cascade testing (family)	6,000.00
Cost to setup run-time environment			Clinician review	240.38
Hardware cost		10,000.00	Intervention cost	
Live data procurement costs		10,000.00	Patient co-pay	50.00
Program manager cost	52	24,000.00	Medication cost	14,000.00
Database expert	52	6,000.00	Facility fees	200.00
MLengineer	52	10,000.00	Execution cost per flagged case	22,480.77
Year 1 build cost		160,961.54	With design cost amortized over 5 years	22,680.77
Monitoring and maintenance costs				
Yearly maintenance cost per ratio		32,192.31	Healthcare System Profit / Loss	5
Cost per prediction			Cost to find true case using the model	1,158.92
Model cost over 5 years		289,730.77	Workflow cost for case found by the model	22,680.77
Year 1 cost per prediction		32.19	Passthrough cost per case	14,000.00
With build cost amoritized over 5 yea	rs	11.59	Healthcare system revenue per case	8,680.77
			Cases found by model	6.96
Benefit accrued to socie	ty or paye	r		
Yearly benefit accrued		1,739,130.43	Year 1 P/L	(100,573.58)
			Year 2 P/L	28,195.65
			Year 3 P/L	28,195.65
			Year 4 P/L	28,195.65
			Year 5 P/L	28,195.65

Data Science Team at SHC

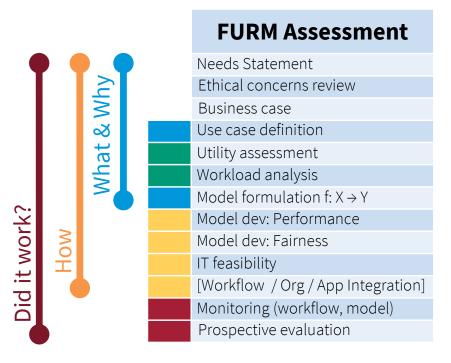


https://dsatshc.stanford.edu/

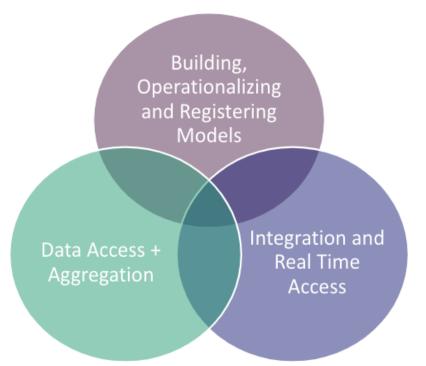
We continue to study the interplay of models, work capacity, and actions



We have developed a way to assess if we are creating Fair, Useful, Reliable Models



You will need processes as well as infrastructure for being "AI ready"



Governance is crucial for enterprise-wide alignment

(Goal is for SHC, Tri-Valley and Partners

The state of AI at Stanford Healthcare

30+ Vendor Applications in Production Using AI

A Roadmap To Welcoming Health Care Innovation

	Readout	R&D	Clinical	Business
1. Discovery (pilots, explorations)	technical feasibility and user acceptance			
2. Development (deployment, strategic project)	proof of meeting intent of the innovation such as access, quality, or productivity gain			
3. Dissemination (enterprise project, scaling deployment, ROI study)	refine the technology as well as optimize the business model			

Stages per http://goto.stanford.edu/innovation

Scaling beyond Stanford Healthcare

Providing guidelines for the responsible use of AI in healthcare

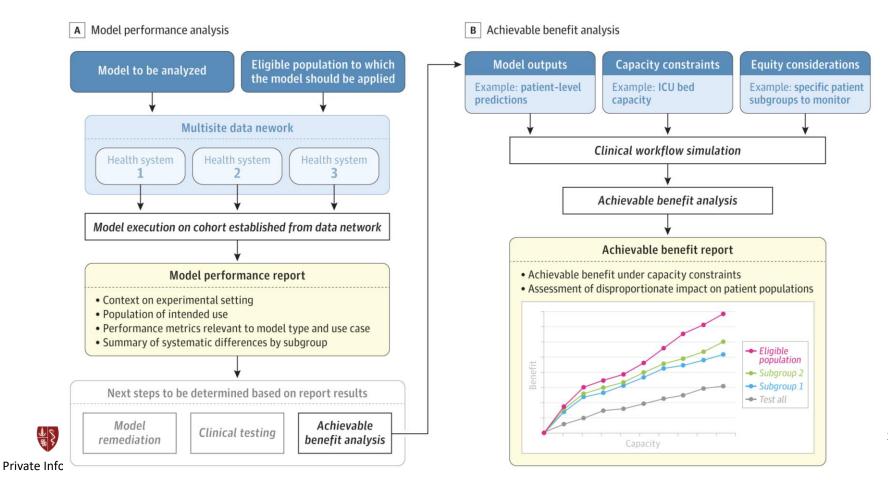
Learn More Insights News

Events

Our Purpose

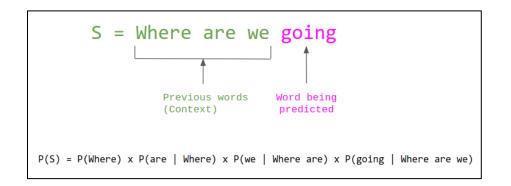
The Coalition for Health AI (CHAI[™]) is a community of academic health systems, organizations, and expert practitioners of artificial intelligence (AI) and data science. These members have come together to harmonize standards and reporting for health AI and educate end-users on how to evaluate these technologies to drive their adoption. Our mission is to provide a framework for the landscape of health AI tools to ensure high quality care, increase trust amongst users, and meet health care needs.

A Nationwide Network of Health AI Assurance Laboratories



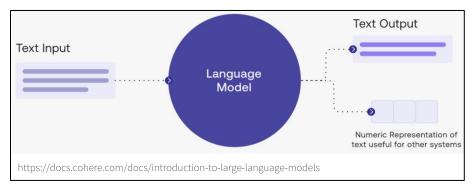
Generative AI changes the framework

Language models 101



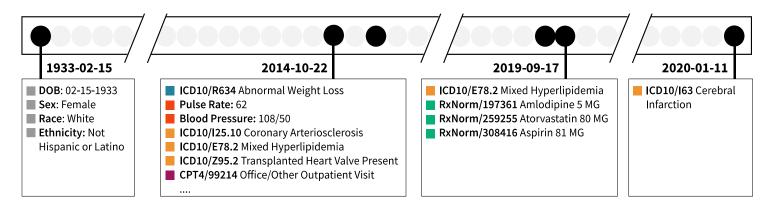
Training data

Language model



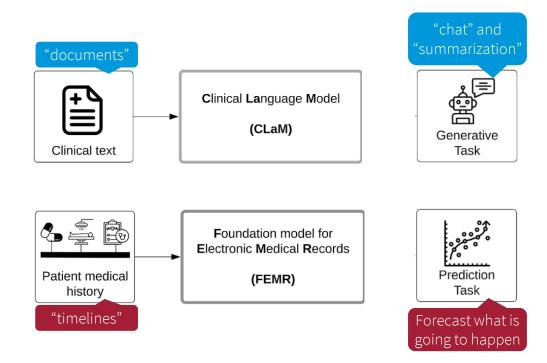
Large language model

Structured EHR data comprise a "language"



EHR "Language": Visit{R634, 999214} | Rx {308416} | Visit{I63, R69} | ...

Two ways to build "language" models using the EHR



https://tinyurl.com/shaky-foundations

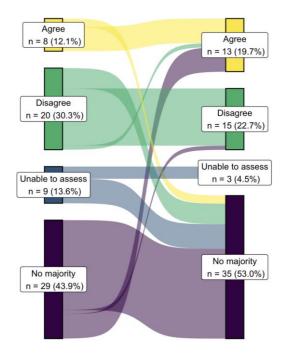
Foundation models for Electronic Medical Records

CLMBR: Clinical language modeling-based representations ^[1]	2021	 3.5 to 19% increase AUROC of binary tasks Classifiers decay less as time passes ^[2] Classifiers transfer better across subgroups ^[3] Classifiers are portable across hospitals ^[4]
MOTOR: Many Outcome Time Oriented Representations ^[5]	2023	 First time-to-event foundation model Better performance over long time horizons 8x faster training 95% less training data

https://github.com/som-shahlab/femr/ for large-scale, self-supervised learning using electronic health records

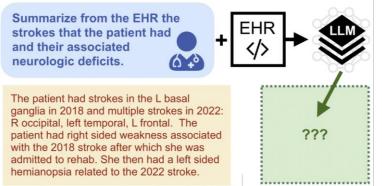
Clinical Language Models

#1: Flashy headlines over-hype memorization



#2: Tuning for medical tasks is limited

Instruction + Clinician Gold Response



Ensuring Useful Adoption of Generative AI in Healthcare

Foundation models transcribe, summarize, or create in service of the science, practice or delivery of care

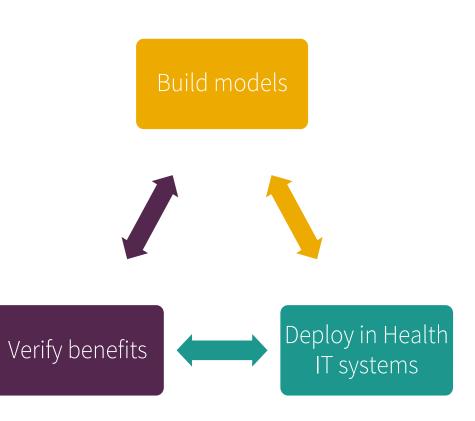
	Science	Practice	Delivery
Transcribe			
Summarize			
Create			

Contrasting traditional vs. foundation models

	Traditional Models	Foundation Models
Deployment	Top-down	Top-down OR Bottom-up
Cost	Predictable	Unpredictable
Value assessment	Well-understood	Unclear how to measure
Capabilities	Narrow, predefined	Used for tasks the model is never trained for
Output	Well-defined	Emergent, can have 'hallucinations'
Example	Predict which patient with renal injury will progress to dialysis	Write a response to a patient message

Efficiency, effectiveness, and productivity

We need to focus on defining and verifying benefits



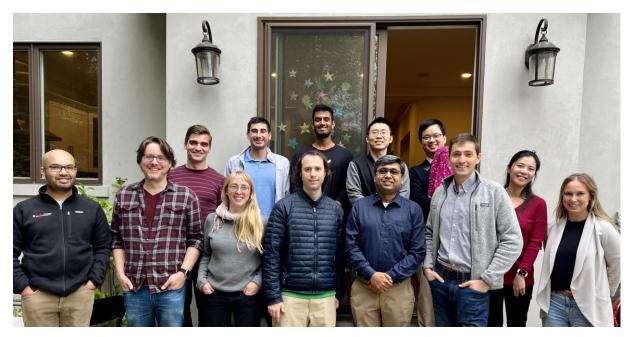
Special Communication | AI in Medicine

August 7, 2023

Creation and Adoption of Large Language Models in Medicine

Nigam H. Shah, MBBS, PhD^{1,2,3}; David Entwistle, BS, MHSA¹; Michael A. Pfeffer, MD^{1,2} Private Information

Acknowledgements



Funding:

- Federal NLM, NHLBI (Past: NIGMS, NHGRI, NINDS, NCI, FDA)
- Institutional Dept. of Medicine, Dean's office, Stanford Hospital
- Fellowships Med Scholars, Siebel Scholars, Stanford Graduate Fellowship, NSF, DoD
- Industry Healogics, Janssen R&D, Oracle, Baidu, Amgen, Google, Apixio, CollabRx, Curai
- Emerson Collective, Mark & Debra Leslie

Questioning conventional wisdom https://tinyurl.com/hai-blogs