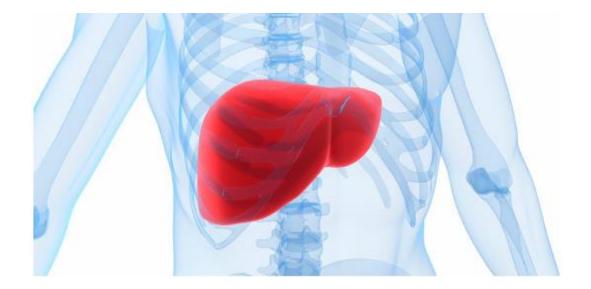


An infectious cause of acute liver injury

Skyler J. Simpson, MD PGY-4 Pathology Resident

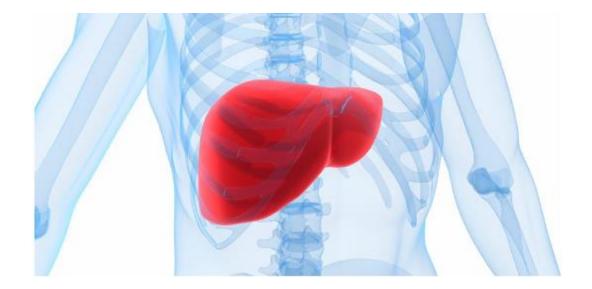
Learning Objectives

1. Understand the interpretation of serologic testing for Epstein-Barr Virus


2. Describe the basic microbiology and transmission of *Coxiella burnetii*

3. Explain the serologic testing for Q fever and how we differentiate between acute and chronic infections

- Clinical case presentation
- Review of liver anatomy and function
- Laboratory values
- Epstein-Barr Virus
 - Background and clinical features
 - Laboratory testing
- Liver biopsy results
- Q fever
 - Introduction and epidemiology
 - Transmission and clinical manifestations
 - Microbiology
 - Laboratory testing
 - Treatment
- Summary



Clinical case presentation

- Review of liver anatomy and function
- Laboratory values
- Epstein-Barr Virus
 - Background and clinical features
 - Laboratory testing
- Liver biopsy results
- Q fever
 - Introduction and epidemiology
 - Transmission and clinical manifestations
 - Microbiology
 - Laboratory testing
 - Treatment
- Summary

Clinical case presentation

- 59 year-old male with past medical history of alcohol use disorder (drinks 12 beers/day for as long as he can remember) presents to urgent care with recent jaundice, diarrhea, nausea, and mid-abdominal pain.
- Two weeks ago, he quit drinking and was using a new herbal supplement (unknown name) from Mexico to decrease alcohol use.
- He misunderstood the instructions for the medication and took 15 days worth of the drug over the course of 3 days which led to the development of his symptoms.
- Most symptoms resolved after a few days, but the jaundice and abdominal pain persisted

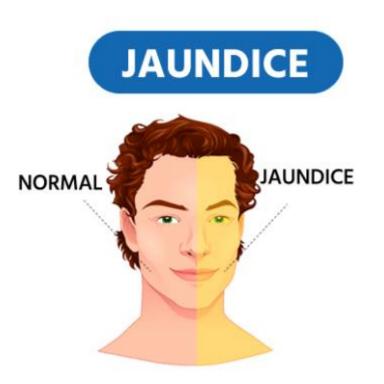
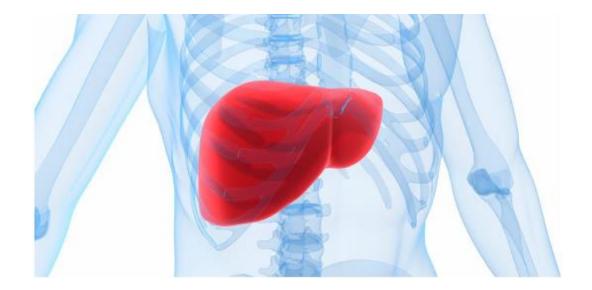


Image from https://www.medicoverhospitals.in/diseases/jaundice


Clinical case presentation

- Family history: No significant family history of liver disease
- Social History:
 - Never smoker
 - No IV drug use
 - Not vaccinated for viral hepatitis B
 - No travel history outside of the US within the past year
- Physical Examination: Patient is jaundiced with scleral icterus, abdominal distension, and tachycardia
- Patient admitted to the hospital for further workup by hepatology

- Clinical case presentation
- Review of liver anatomy and function
- Laboratory values
- Epstein-Barr Virus
 - Background and clinical features
 - Laboratory testing
- Liver biopsy results
- Q fever
 - Introduction and epidemiology
 - Transmission and clinical manifestations
 - Microbiology
 - Laboratory testing
 - Treatment
- Summary

The Liver

- The liver is in the RUQ of the abdominal cavity
- Weight: 1500-1800 grams (3-4 lbs)
- Major functions:
 - Production of bile
 - Protein production (albumin, clotting factors...)
 - Fat soluble vitamin storage/metabolism
 - Bilirubin metabolism (heme breakdown)
 - Drug metabolism
 - Cholesterol and glucose metabolism
 - Protein metabolism (ammonia)

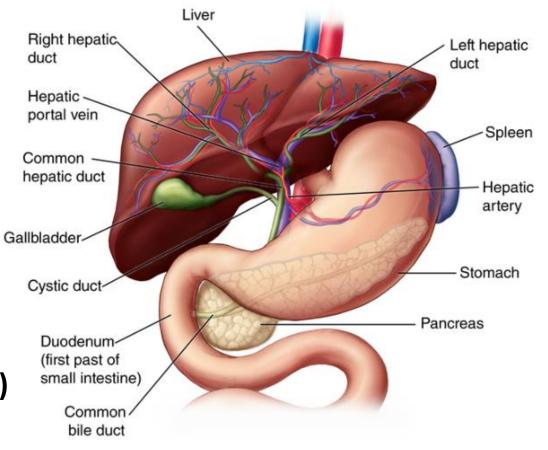


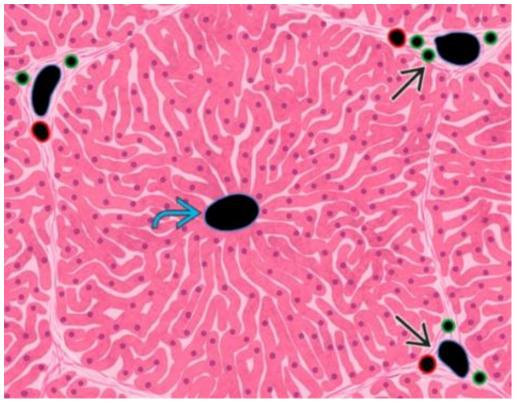
Image from https://www.hopkinsmedicine.org/health/conditions-and-diseases/liver-anatomy-and-functions

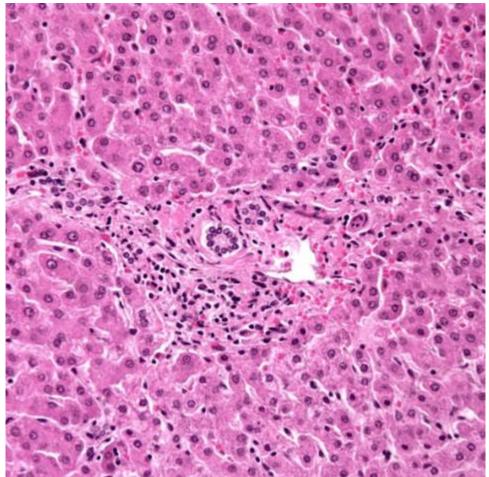
Liver Gross Anatomy Images

Normal liver

Image from https://webpath.med.utah.edu/LIVEHTML/LIVER002.html

Liver Cirrhosis


Gross image from a case of liver cirrhosis



Liver Microscopic Images

Liver architecture diagram

Normal Liver Histology

Images from Expertpath.com

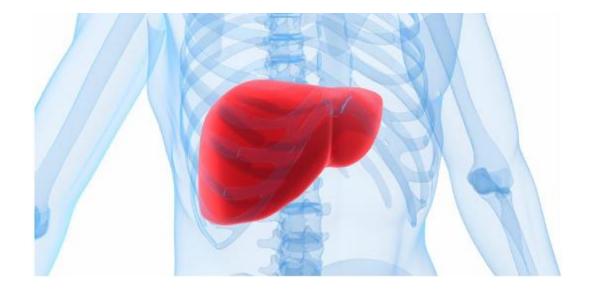
Differential diagnosis for liver injury

- Autoimmune
 - Primary biliary cirrhosis
 - Primary sclerosing cholangitis
 - Autoimmune hepatitis
- Genetic
 - Wilson disease
 - Alpha-1-antitrypsin deficiency
 - Hemochromatosis
 - Crigler-Najjar syndrome
- Viral Infection
 - Hepatitis A, B, C, or D
 - Cytomegalovirus (CMV)
 - Epstein-Barr virus (EBV)
 - Herpes Simplex virus (HSV)

- Nonalcoholic liver disease
 - Congestive heart failure
 - Biliary disease
 - Nonalcoholic steatohepatitis

• Toxins

- Alcohol
- Aflatoxin
- Acetaminophen
- Other drugs
- Hematologic syndromes
 - HELLP
 - Ischemia
 - Budd-Chiari syndrome


²Genzen JR, Slev, PR. Liver disease evaluation. ARUP consult. https://arupconsult.com/content/liver-disease-evaluation

- Clinical case presentation
- Review of liver anatomy and function

• Laboratory values

- Epstein-Barr Virus
 - Background and clinical features
 - Laboratory testing
- Liver biopsy results
- Q fever
 - Introduction and epidemiology
 - Transmission and clinical manifestations
 - Microbiology
 - Laboratory testing
 - Treatment
- Summary

Liver pathology laboratory markers

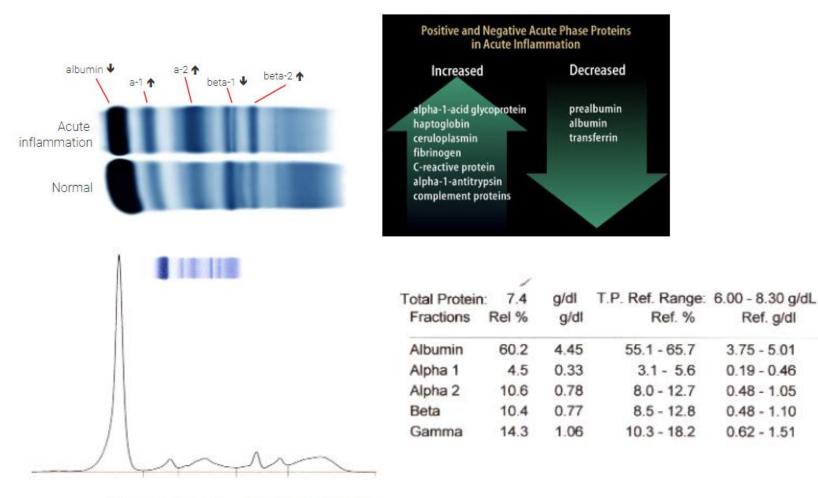
	Hepatocellular Damage		Excretory Function		
AST	 Found in numerous tissues, including the liver, cardiac muscle, skeletal muscle, kidneys, brain, and pancreas 	Serum bilirubin	 Heme product from catalysis and conjugation with glucuronic acid 3 fractions – conjugated, unconjugated, and delta bilirubin 		
ALT	 Found primarily in the liver Considered most specific laboratory test for liver injury Release of enzymes into the blood occurs when liver-cell membrane is damaged 		 (albumin bound) Causes jaundice when concentrations exceed 1.5 mg/dL Conjugated hyperbilirubinemia indicates liver disease 		
	Biosynthetic Function (Proteins)	Urine bilirubin	 Performed qualitatively using a urine dipstick 		
Markers of nutrition	 Albumin (not liver specific but does mirror long-term hepatic synthetic function) Prealbumin Retinol binding protein 	Blood ammonia	 Liver converts ammonia to urea – significant liver dysfunction results in elevated serum ammonia Poor correlation between ammonia level and degree of liver disease 		
Alpha and beta	 Alpha globulin Alpha-1-antitrypsin Ceruloplasmin Beta globulin Transferrin Sex hormone binding globulin 		Cholestasis		
globulins		ALP	 Isoenzymes include liver, bone, placental, and intestinal forms of ALP Usually increased during periods of growth (eg, children and teenagers) and during pregnancy 		
Coagulation	 Most factors are produced in the liver Factors II, VII, IX, and X are vitamin-K dependent (factors require adequate quantities of vitamin K for production of functional factors) PT is a collective measure of factors II, V, VII, and X 	GGT	 Very sensitive indicator of liver injury (even minor injury) Clinical value – determine origin of elevated ALP 		
factors		5' NT	 Very sensitive and specific for hepatobiliary disease Clinical value – determine origin of elevated ALP 		

²Genzen JR, Slev, PR. Liver disease evaluation. ARUP consult. https://arupconsult.com/content/liver-disease-evaluation

Laboratory tests ordered

- **General labs**:
 - Complete blood count:
 - WBC: 19.46 k/uL (high)
 - Hgb 12.9 g/dL (low)
 - MCV 85.6 (normal)
 - Platelet 283 k/uL (normal)
 - **Coagulation (synthetic function):** •
 - Prothrombin time 21.0 seconds (high) •
 - **Plasma ammonia**: <44 umol/L (normal) ٠
 - Ceruloplasmin (Wilson): 31 mg/dL (mild ٠ elevation)
 - Alpha-1-antitrypsin: 306 mg/dL (high)

- **Complete metabolic panel (general chemistry):**
 - Protein 5.5 g/dL (low) Albumin 2.1 g/dL (low) Synthetic function


 - Total bilirubin 19.0 mg/dL (very high!) Excretory
 - Direct bilirubin 11.3 mg/dL function
 - Alkaline phosphatase 159 U/L (mild elevation) •
 - AST 159 U/L (high)
 ALT 100 U/L (high) Hepatocellular damage
- Iron panel (hemochromatosis):
 - Iron S/P 37 ug/dL (low)
 - TIBC 126 ug/dL (low) •
 - Transferrin saturation 29% (normal) •
 - Ferritin 1398 ng/mL (high)

Anemia of chronic disease

LABORATORIES

Protein electrophoresis

Alb a-1 a-2 beta gamma

Images courtesy of Dr. Julio Delgado

Laboratory tests ordered

- **General labs**:
 - Complete blood count:
 - WBC: 19.46 k/uL (high)
 - Hgb 12.9 g/dL (low)
 - MCV 85.6 (normal)
 - Platelet 283 k/uL (normal)
 - **Coagulation (synthetic function):** •
 - Prothrombin time 21.0 seconds (high) •
 - INR 1.9 (normal) •
 - **Plasma ammonia**: <44 umol/L (normal) ٠
 - Ceruloplasmin (Wilson): 31 mg/dL (mild elevation)
 - **Alpha-1-antitrypsin:** 306 mg/dL (high)

- Complete metabolic panel (general chemistry):
 - Protein 5.5 g/dL (low)
 Albumin 2.1 g/dL (low)
 Synthetic function

 - Total bilirubin 19.0 mg/dL (very high!) Excretory
 - Direct bilirubin 11.3 mg/dL function
 - Alkaline phosphatase 159 U/L (mild elevation)
 - AST 159 U/L (high)
 ALT 100 U/L (high) - Hepatocellular damage

Anemia of

chronic disease

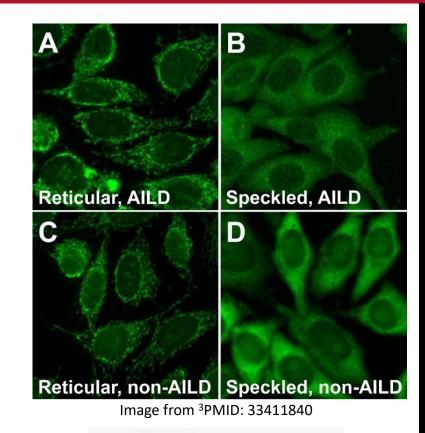
LABORATORIE

- Iron panel (hemochromatosis):
 - Iron S/P 37 ug/dL (low)
 - TIBC 126 ug/dL (low)
 - Transferrin saturation 29% (normal)
 - Ferritin 1398 ng/mL (high)

Interpretation: Acute liver damage is present with very high bilirubin, AST>ALT

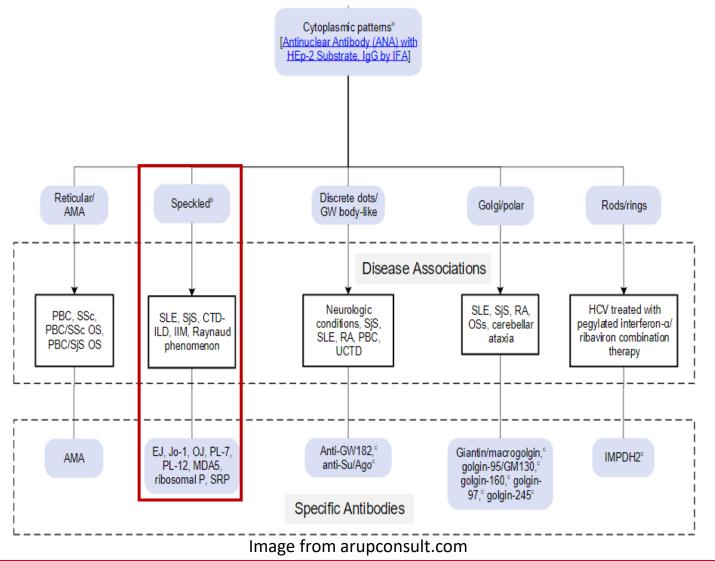
Liver disease differential diagnosis

- Autoimmune
 - Primary biliary cirrhosis
 - Primary sclerosing cholangitis
 - Autoimmune hepatitis
- Genetic
 - Wilson disease
 - Alpha-1-antitrypsin deficiency
 - Hemochromatosis
 - Crigler-Najjar syndrome
- Viral Infection
 - Hepatitis A, B, C, or D
 - Cytomegalovirus (CMV)
 - Ebstein-Barr virus (EBV)
 - Herpes Simplex virus (HSV)


- Nonalcoholic liver disease
 - Congestive heart failure
 - Biliary disease
 - Nonalcoholic steatohepatitis
- Toxins
 - Alcohol
 - Aflatoxin
 - Acetaminophen
 - Other drugs
- Hematologic syndromes
 - HELLP
 - Ischemia
 - Budd-Chiari syndrome

Immunology laboratory tests

- ANA with HEp-2 Substrate IgG by IFA:
 - Nuclear pattern: negative
 - Speckled cytoplasmic pattern: Positive, 1:160 titer
- Method:
 - Commercially available HEp-2 substrate slides
 - Add patient serum and then IgG conjugate antibody with fluorescein dye
- Background:
 - Antinuclear antibodies are autoantibodies to structures in the nucleus, cytoplasm, and mitotic apparatus
 - Associated with different systemic autoimmune rheumatic diseases, but also seen in other conditions
 - ANA is a good screening method, but not specific
 - Report the titer and pattern by IFA



Images from werfen.com

Immunology laboratory tests

²Genzen JR, Slev, PR. Liver disease evaluation. ARUP consult. https://arupconsult.com/content/liver-disease-evaluation

Immunology laboratory tests

• Antibodies related to autoimmune hepatitis:

- F-actin (smooth muscle) antibody, IgG: 63 (Ref 0-19)
- F-actin antibody, IgA: 67.1 (Ref 0-24.9)
- Smooth muscle antibody, IgG: 1:160 (Ref <1:20)
- Liver-Kid Microsome antibody, IgG: <1:20
- Mitochondrial antibody, IgG: 73.6 (Ref 0-24.9)
- Overall serum IgG: 1408 mg/dL (normal)

*The presence of autoantibodies (even high titer) are not diagnostic of disease and should always be correlated with other laboratory results and overall clinical picture of the patient.

Simplified Diagnostic Criteria for AIH					
Variable	Cutoff	Points			
lgG	Above upper limit	1			
	>1.10 times upper limi	>1.10 times upper limit of normal			
Liver histology	Compatible with AIH	Compatible with AIH			
	Typical of AIH	2			
Absence of viral hepatitis	Yes	2			
ANAs or SMAs ^a	≥1:40		1		
	≥1:80	2			
Anti-LKM ^a	≥1:40	2			
Anti-SLA ^a	Positive		2		
	Results				
Diagnosis		Cutoff (Points)			
Probable AIH		6			
Definite AIH		≥7			

Simplified International Autoimmune Hepatitis Group (IAIHG) criteria from arupconsult.com

- Autoimmune
 - Primary biliary cirrhosis
 - Primary sclerosing cholangitis
 - Autoimmune hepatitis
- Genetic
 - Wilson disease
 - Alpha-1-antitrypsin deficiency
 - Hemochromatosis
 - Crigler-Najjar syndrome
- Viral Infection
 - Hepatitis A, B, C, or D
 - Cytomegalovirus (CMV)
 - Ebstein-Barr virus (EBV)
 - Herpes Simplex virus (HSV)

- Nonalcoholic liver disease
 - Congestive heart failure
 - Biliary disease
 - Nonalcoholic steatohepatitis
- Toxins
 - Alcohol
 - Aflatoxin
 - Acetaminophen
 - Other drugs
- Hematologic syndromes
 - HELLP
 - Ischemia
 - Budd-Chiari syndrome

²Genzen JR, Slev, PR. Liver disease evaluation. ARUP consult. https://arupconsult.com/content/liver-disease-evaluation

Infectious disease laboratory tests ordered

- Acute hepatitis virus panel:
 - Hepatitis A antibody, IgM: Negative
 - Hepatitis B:
 - Core antibody, IgM: Negative
 - Surface antigen: Negative
 - Hepatitis C antibody by CIA: Negative, 0.41
- Epstein-Barr Virus (EBV)
 - Antibody to nuclear antigen, IgG: >600 (Ref 0-21.9)
 - Antibody to early antigen, IgG: <5.0 (normal)
 - Viral capsid antigen, IgM: 58.5 (Ref 0-43.9)
 - Viral capsid antigen, IgG: >750 (Ref 0-21.9)
 - PCR: Positive

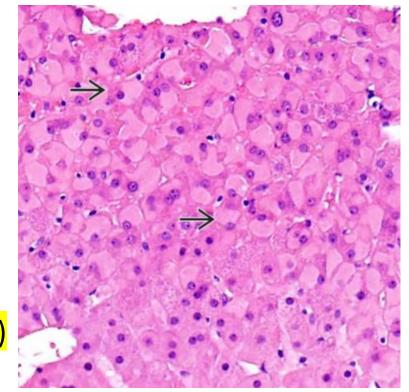
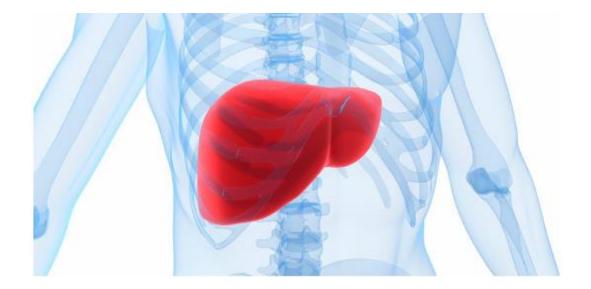
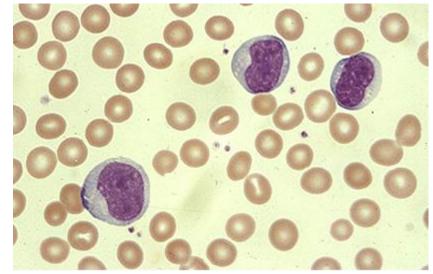



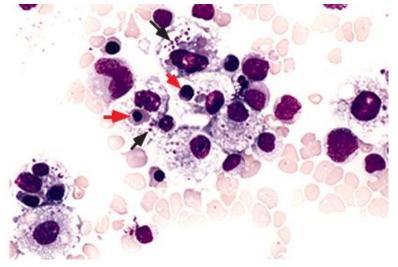
Image from Expertpath.com

- Clinical case presentation
- Review of liver anatomy and function
- Laboratory values
- Epstein-Barr Virus
 - Background and clinical features
 - Laboratory testing
- Liver biopsy results
- Q fever
 - Introduction and epidemiology
 - Transmission and clinical manifestations
 - Microbiology
 - Laboratory testing
 - Treatment
- Summary

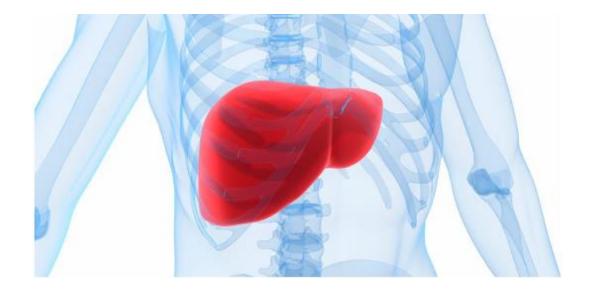


Epstein-Barr Virus (EBV)

- Also known as Human Herpesvirus 4
- Double-stranded DNA virus
- Worldwide distribution with EBVseropositivity in approximately 90-95% adults
- Most infections are subclinical
- Infectious Mononucleosis: "Kissing disease"
 - Spread through saliva, mostly in young adults
 - Fever, adenopathy, pharyngitis, **splenomegaly**
 - EBV infects oropharyngeal epithelial cells, B cell, monocytes, and T cells (CD8+ T cells in blood)
 - Life-long latency in B cells


Signs					
Adenopathy	100				
Fever	80 to 95				
Pharyngitis	65 to 85				
Splenomegaly	50 to 60				
Bradycardia	35 to 50				
Periorbital edema	25 to 40				
Palatal enanthem	25 to 35				
Liver and spleen tenderness	15 to 30				
Hepatomegaly	15 to 25				
Rhinitis	10 to 25				
Jaundice	5 to 10				
Skin rash	3 to 6				
Pneumonitis	<3				

- Acute infection (IM):
 - Hemolytic anemia: "Cold agglutinin" IgM Anti-i antibody to fetal RBCs
 - EBV can affect basically any organ system and cause disease (including liver)
- Chronic/delayed complications:
 - Oral hairy leukoplakia (usually immunocompromised)
 - Lymphoproliferative disorders
 - Hemophagocytic lymphohistiocytosis
 - B cell and T cell lymphomas
 - Post-transplant lymphoproliferative disorder
 - Nasopharyngeal carcinoma

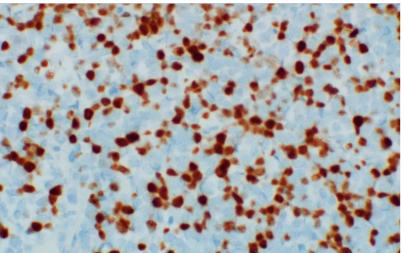


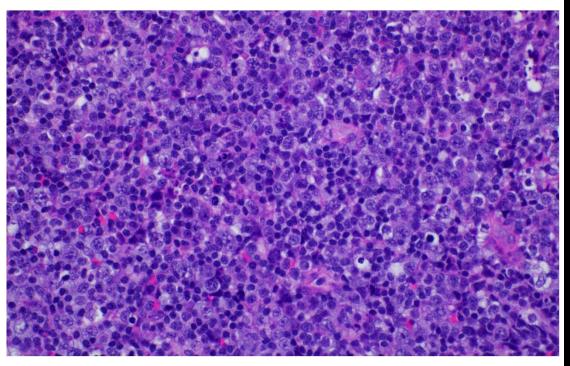
- Clinical case presentation
- Review of liver anatomy and function
- Laboratory values
- Epstein-Barr Virus
 - Background and clinical features
 - Laboratory testing
- Liver biopsy results
- Q fever
 - Introduction and epidemiology
 - Transmission and clinical manifestations
 - Microbiology
 - Laboratory testing
 - Treatment
- Summary

EBV laboratory testing

• Infectious Mononucleosis rapid test:

- Primary EBV infection of B cells induce the production of antibodies directed against viral and unrelated antigens found on bovine RBCs
- Use bovine erythrocytes to detect the presence of heterophile antibodies
- Rapid tests use immunochromatographic dipstick technology with a strip that has bovine erythrocyte extract coated on the membrane


- Mix the patient serum with a diluent, add absorbent end to this mixture
- In 5 minutes, a heterophile antibody will complex with the bovine RBC extract conjugated color particles in the mixture and also with bovine RBC extract on the membrane (IgM antibodies are pentamers)



EBV In-situ Hybridization (ISH)

- EBV ISH is used to detect viral RNA in infected cells in tissue biopsy samples using nucleotide specific probes
- The probes hybridize with the specific EBER RNA sequences and a color is produced (DAB/Peroxidase)

Images courtesy of Dr. Anton Rets

EBV laboratory testing

• EBV PCR:

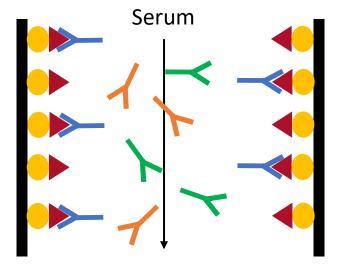
- Can be useful early in a case of infectious mononucleosis when false negative results can happen for the heterophile antibody test
- However, a positive PCR does not distinguish between IM and reactivation
- Viral genomes can be detected in 40-70% of patients at symptom onset

• EBV specific antibodies:

- Useful in separating out acute vs. latent vs. reactivation
- Longer turn-around time
- Usually done if the patient has a negative heterophile antibody test
- Young children often have a negative heterophile antibody test

⁴Aronson, MD and Auwaerter PG. Infectious mononucleosis. UpToDate.

⁵Hillyard, DR, Slev PR. Epstein-Barr Virus – EBV. ARUP consult. <u>https://arupconsult.com/content/epstein-barr-virus</u>

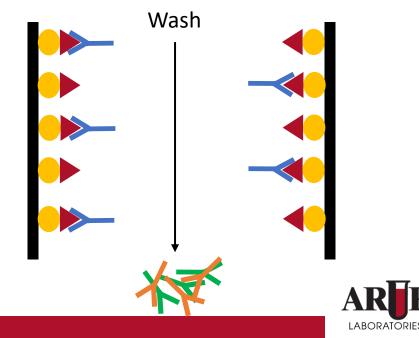


- Nuclear antigen (EBNA), IgG: <a>>600
- Early antigen (EA), IgG: <5.0
- Viral capsid antigen (VCA), IgM: 58.5
- Viral capsid antigen (VCA), IgG: 750

Interpretation of EBV-Specific Serologic Results					
Infection	VCA IgM	VCA IgG	EA	EBNA	
No previous	Negative	Negative	Negative	Negative	
Acute/primary	Positive	Positive	Positive/negative	Negative	
Recent	Positive/negative	Positive	Positive/negative	Positive/negative	
Past	Negative	Positive	Negative	Positive	
Reactivation ^a	Positive/negative	Positive	Positive	Positive	
Table from arupconsult.com					

METHOD:

- Indirect Chemiluminescent immunoassay
 - Use magnetic particles coated with the antigen (EBNA, EA, VCA) as solid phase
 - Mouse anti-human IgG with isoluminol

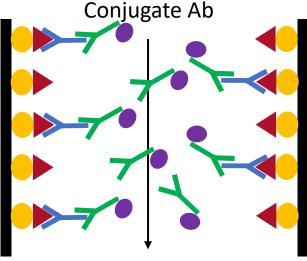


- Nuclear antigen (EBNA), IgG: <a>>600
- Early antigen (EA), IgG: <5.0
- Viral capsid antigen (VCA), IgM: 58.5
- Viral capsid antigen (VCA), IgG: 750

Interpretation of EBV-Specific Serologic Results					
Infection	VCA IgM	VCA IgG	EA	EBNA	
No previous	Negative	Negative	Negative	Negative	
Acute/primary	Positive	Positive	Positive/negative	Negative	
Recent	Positive/negative	Positive	Positive/negative	Positive/negative	
Past	Negative	Positive	Negative	Positive	
Reactivation ^a	Positive/negative	Positive	Positive	Positive	
Table from arupconsult.com					

METHOD:

- Indirect Chemiluminescent immunoassay
 - Use magnetic particles coated with the antigen (EBNA, EA, VCA) as solid phase
 - Mouse anti-human IgG with isoluminol



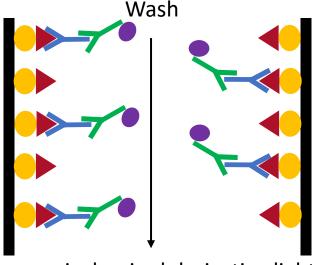
- Nuclear antigen (EBNA), IgG: <a>>600
- Early antigen (EA), IgG: <5.0
- Viral capsid antigen (VCA), IgM: 58.5
- Viral capsid antigen (VCA), IgG: 750

Interpretation of EBV-Specific Serologic Results					
Infection	VCA IgM	VCA IgG	EA	EBNA	
No previous	Negative	Negative	Negative	Negative	
Acute/primary	Positive	Positive	Positive/negative	Negative	
Recent	Positive/negative	Positive	Positive/negative	Positive/negative	
Past	Negative	Positive	Negative	Positive	
Reactivation ^a	Positive/negative	Positive	Positive	Positive	
Table from arupconsult.com					

METHOD:

- Indirect Chemiluminescent immunoassay
 - Use magnetic particles coated with the antigen (EBNA, EA, VCA) as solid phase
 - Mouse anti-human IgG with isoluminol

Measure isoluminol derivative light signal with a photomultiplier

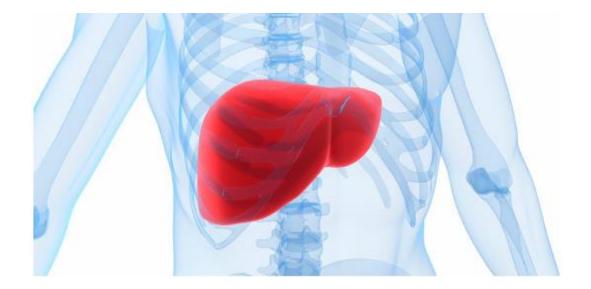


- Nuclear antigen (EBNA), IgG: <a>>600
- Early antigen (EA), IgG: <5.0
- Viral capsid antigen (VCA), IgM: 58.5
- Viral capsid antigen (VCA), IgG: 750

Interpretation of EBV-Specific Serologic Results					
Infection	VCA IgM	VCA IgG	EA	EBNA	
No previous	Negative	Negative	Negative	Negative	
Acute/primary	Positive	Positive	Positive/negative	Negative	
Recent	Positive/negative	Positive	Positive/negative	Positive/negative	
Past	Negative	Positive	Negative	Positive	
Reactivation ^a	Positive/negative	Positive	Positive	Positive	
Table from arupconsult.com					

METHOD:

- Indirect Chemiluminescent immunoassay
 - Use magnetic particles coated with the antigen (EBNA, EA, VCA) as solid phase
 - Mouse anti-human IgG with isoluminol



Measure isoluminol derivative light signal with a photomultiplier

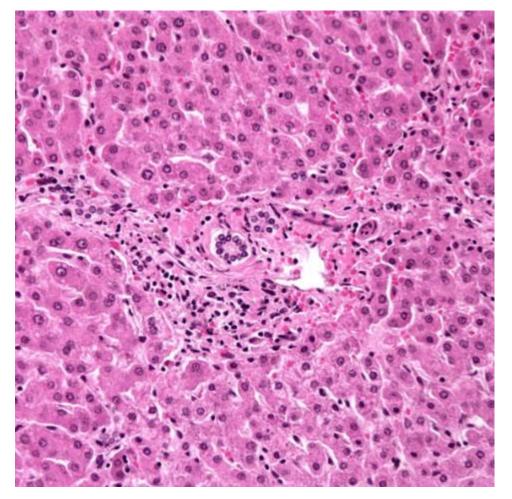
- Clinical case presentation
- Review of liver anatomy and function
- Laboratory values
- Epstein-Barr Virus
 - Background and clinical features
 - Laboratory testing
- Liver biopsy results
- Q fever
 - Introduction and epidemiology
 - Transmission and clinical manifestations
 - Microbiology
 - Laboratory testing
 - Treatment
- Summary

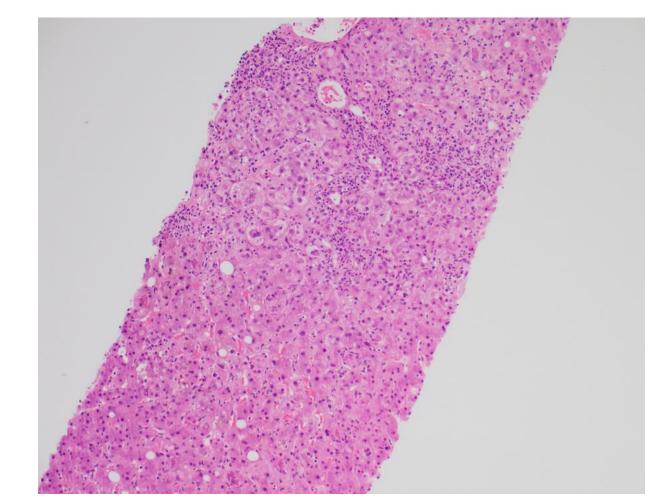
Liver disease differential diagnosis

- Autoimmune
 - Primary biliary cirrhosis
 - Primary sclerosing cholangitis
 - Autoimmune hepatitis
- Genetic
 - Wilson disease
 - Alpha-1-antitrypsin deficiency
 - Hemochromatosis
 - Crigler-Najjar syndrome
- Viral Infection
 - Hepatitis A, B, C, or D
 - Cytomegalovirus (CMV)
 - Ebstein-Barr virus (EBV)
 - Herpes Simplex virus (HSV)

- Nonalcoholic liver disease
 - Congestive heart failure
 - Biliary disease
 - Nonalcoholic steatohepatitis

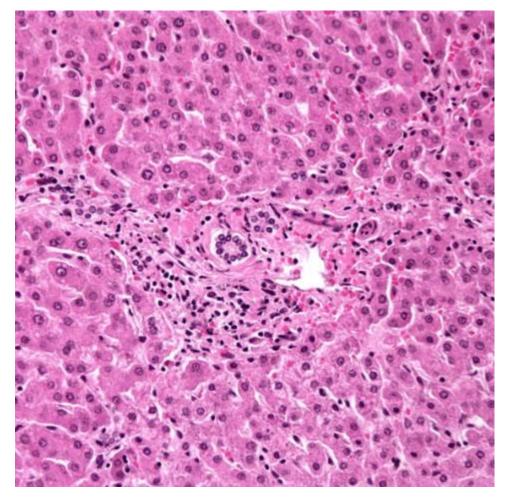
• Toxins


- Alcohol
- Aflatoxin
- Acetaminophen
- Other drugs
- Hematologic syndromes
 - HELLP
 - Ischemia
 - Budd-Chiari syndrome

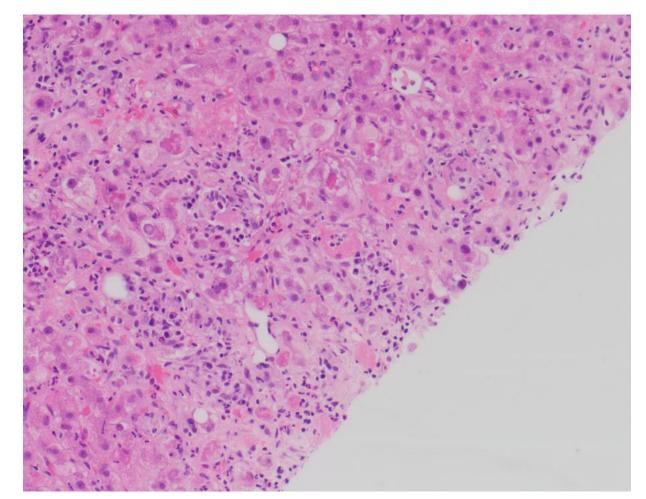

²Genzen JR, Slev, PR. Liver disease evaluation. ARUP consult. https://arupconsult.com/content/liver-disease-evaluation

Liver biopsy

Normal Liver (Image from Expertpath.com)

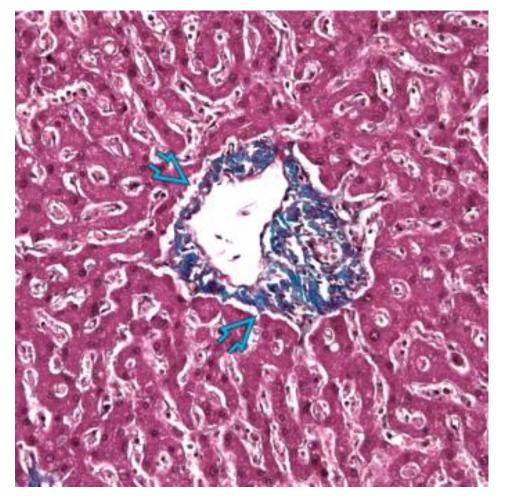


Patient liver biopsy at low power

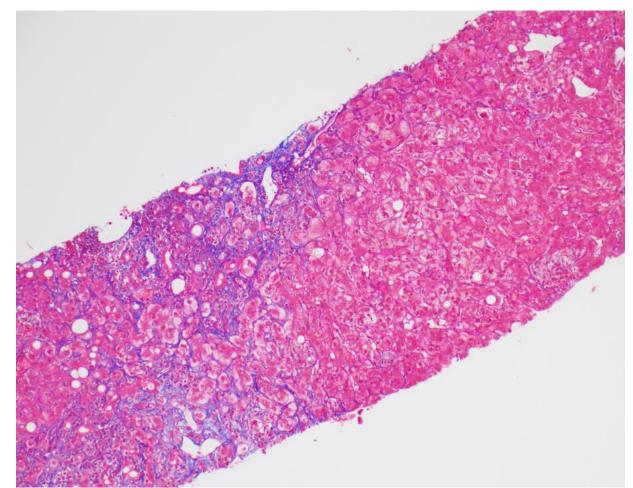


Liver biopsy

Normal Liver (Image from Expertpath.com)



Patient liver biopsy at high power



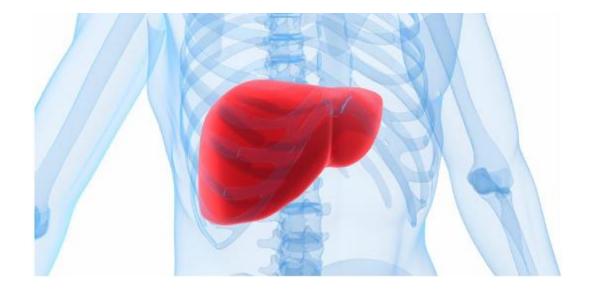
Liver biopsy

Normal Liver (Image from Expertpath.com)

Trichrome stain for fibrosis

Liver biopsy pathology

- Active and chronic steatohepatitis with advanced fibrosis
 - Hepatocyte ballooning with intracellular Mallory-Denk bodies (Alcohol)
- Patchy portal and lobular plasma cells (seen with drug-induced liver injury and autoimmune hepatitis)
- Fibrin ring granulomas: Can be seen with Coxiella burnetti (Q fever), EBV, CMV, among other etiologies
- EBV In-situ hybridization (ISH): Negative
- CMV immunohistochemistry: Negative



- Clinical case presentation
- Review of liver anatomy and function
- Laboratory values
- Epstein-Barr Virus
 - Background and clinical features
 - Laboratory testing
- Liver biopsy results

• Q fever

- Introduction and epidemiology
- Transmission and clinical manifestations
- Microbiology
- Laboratory testing
- Treatment
- Summary

Q fever serology by IFA

- Phase I IgM: Positive, 1:256
- Phase I IgG: Positive, 1:512
- Phase II IgM: Positive, 1:4096
- Phase II IgG: Positive, >1:131072
- Interpretation: Antibodies to Phase II antigens > Phase I antigens, compatible with Acute Q fever



Image courtesy of the Microbial Immunology II lab

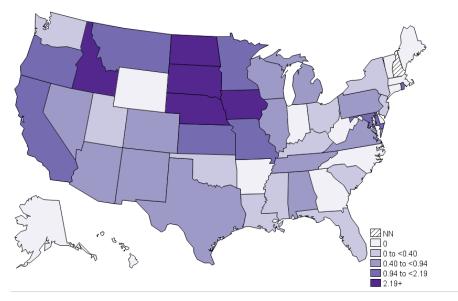
- Clinical case presentation
- Review of liver anatomy and function
- Laboratory values
- Epstein-Barr Virus
 - Background and clinical features
 - Laboratory testing
- Liver biopsy results
- Q fever
 - Introduction and epidemiology
 - Transmission and clinical manifestations
 - Microbiology
 - Laboratory testing
 - Treatment
- Summary

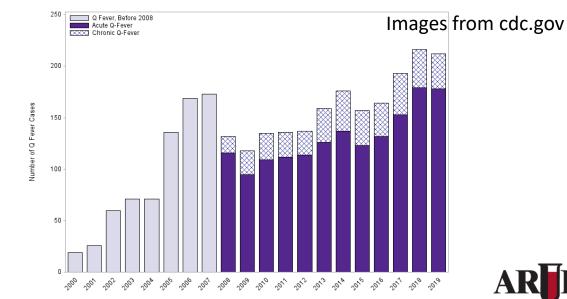
Q fever

- Q fever is the disease caused by the bacteria *Coxiella burnetii*
- Zoonotic disease typically acquired from farm animals (cattle, sheep, and goats), other reservoirs include birds, turtles, and arthropods (ticks)
- First recognized as a human disease in Australia in 1935 during an outbreak in workers in a slaughterhouse
- Initially called "Q fever" for "query" because the cause was unknown.

⁶Jackson, Brian. Coxiella burnetti – Q fever. https://arupconsult.com/content/coxiella-burnetii ⁷https://www.cdc.gov/gfever/stats/index.html

Image from theguardian.com




Epidemiology

- Geographic distribution of Q fever is worldwide with few exceptions such as New Zealand
- In the US, Q fever was discovered in the 1940s and became a nationally notifiable disease by 1999.
- Cases of Q fever in the US have been increasing since 2000.
- Most cases are in the western and plains states
 - Spring and early summer months during birthing season for cattle, sheep, and goats

Annual incidence (per million population) of reported Q fever–United States, 2019. (NN= Not notifiable)

Number of reported cases of Q fever –United States, 2000–2019

LABORATORIES

Epidemiology

- Individuals with highest risk:
 - Persons in contact with farm animals (ranchers, farmers, veterinarians...)
 - Individuals living downwind from farms
 - Laboratory personnel
 - Slaughterhouse workers
- More common in men and older people

Average annual incidence (per million population) of reported Q fever, by age group–United States, 2019

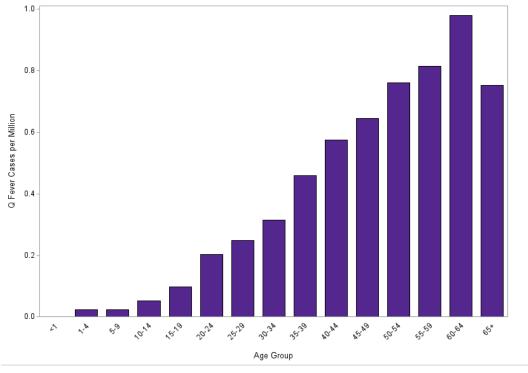


Image from cdc.gov



- Clinical case presentation
- Review of liver anatomy and function
- Laboratory values
- Epstein-Barr Virus
 - Background and clinical features
 - Laboratory testing
- Liver biopsy results

• Q fever

- Introduction and epidemiology
- Transmission and clinical manifestations
- Microbiology
- Laboratory testing
- Treatment
- Summary

Transmission

- People who become infected usually do so after contact with infected animal
 - *Coxiella* is usually found in animal feces, urine, milk, and birth products
- Breathing in dust (aerosol) from the environment that has *Coxiella* (range can be miles)
- Eating contaminated unpasteurized dairy products
- Rare reports of blood transfusion, mother-to-fetus, and sexual transmission
- Potential agent of bioterrorism

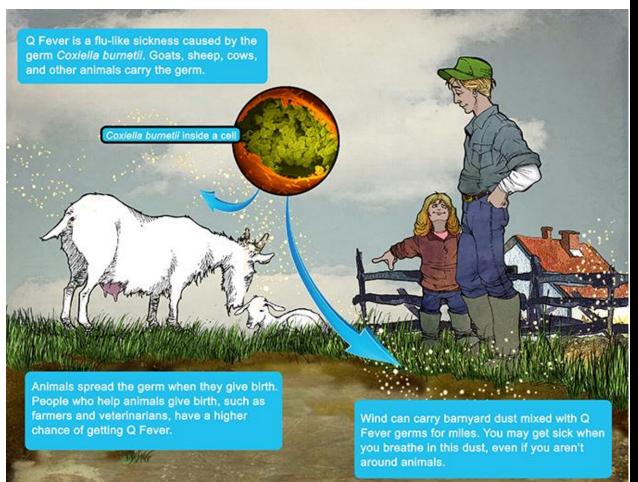


Image from cdc.gov

Clinical Manifestations of Acute Q fever

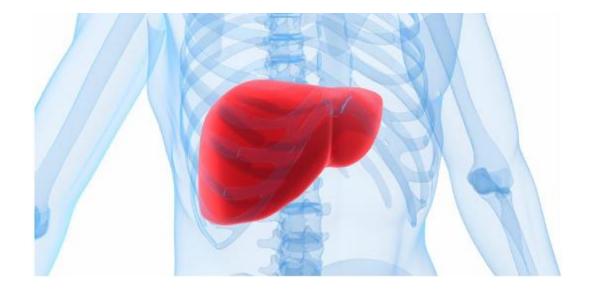
- Incubation period: approximately 20 days
- Acute infection: self-limited "flu-like illness"
 - High grade fever, fatigue, headache, myalgias, nausea/vomiting
 - Some patients may experience more serious illness with pneumonia, hepatitis (most common), myocarditis, or CNS complications
- Estimated half of infected people are asymptomatic
- Pregnant women have increased risk of miscarriage, preterm delivery, or low infant birth weight

Clinical Manifestations of Chronic Q fever

- Chronic infection: Persistent localized infections after acute Q fever infection.
 - Occurs in 1-5%, usually immunocompromised, underlying valvular/vascular disease, pregnancy, or prosthetic joints
 - Can present within weeks to years after initial acute infection.

• Clinical Manifestations:

- Most common manifestation is endocarditis which is fatal if left untreated
- Vascular aneurysms
- Liver disease
- Lymphadenitis/lymphoma
- Bone/joint infections

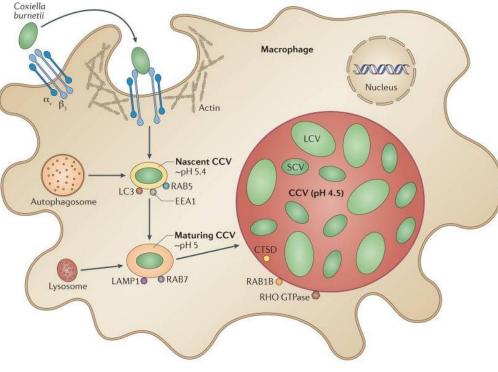


- Clinical case presentation
- Review of liver anatomy and function
- Laboratory values
- Epstein-Barr Virus
 - Background and clinical features
 - Laboratory testing
- Liver biopsy results

• Q fever

- Introduction and epidemiology
- Transmission and clinical manifestations
- Microbiology
- Laboratory testing
- Treatment
- Summary

Basic Microbiology


- *Coxiella burnetii* is a short pleomorphic gram-negative rod that is strictly intracellular
- Not easily cultured due to being intracellular
- Can do shell vial technique (Human embryonic lung fibroblasts) to culture but must use Biosafety level 3 containment
- The bacteria multiply within the phagolysosome of macrophages in mammals, using immune evading mechanisms (described on the next slide)

Basic Microbiology

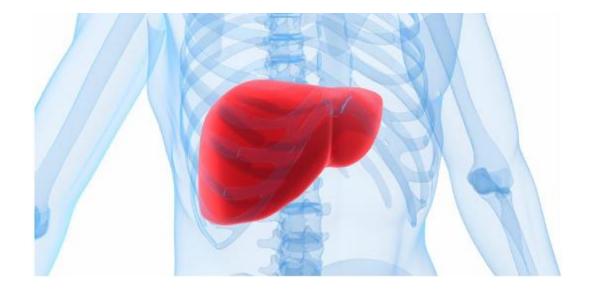
- Biphasic developmental cycle
 - Small cell variant: 0.2-0.5 um in size
 - Non-replicating infectious form that is very resistant to environmental stressors
 - Dense cell wall/outer membrane complex
 - Large cell variant: >0.5 um in size
 - Replicating phase form that is intracellular
 - More sensitive to environmental stressors
 - After replication, a stationary phase is approached and the number of small cell variants increase before release from host cells


¹⁰Image from PMID: 23797173

Basic Microbiology

- In cell culture, we can grow *Coxiella burnetti* and see a change in antigen expression
 - Phase I antigen expression: Virulent form with lipopolysaccharide (LPS) having a complete O antigen (blocks the ability of TLR2 to bind)
 - Phase II antigen expression: Avirulent form with antigenic shift resulting in a LPS modification which exposes certain proteins on the surface of the bacteria

¹⁰Image from PMID: 23797173



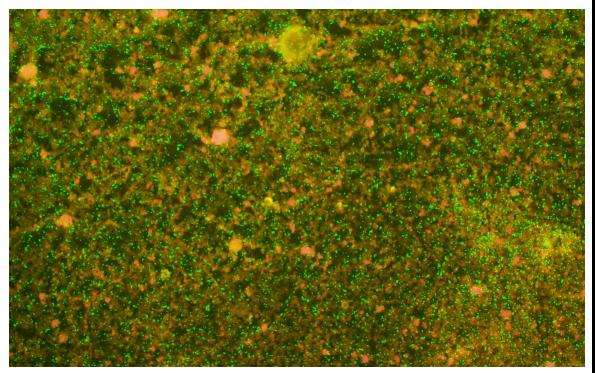
- Clinical case presentation
- Review of liver anatomy and function
- Laboratory values
- Epstein-Barr Virus
 - Background and clinical features
 - Laboratory testing
- Liver biopsy results

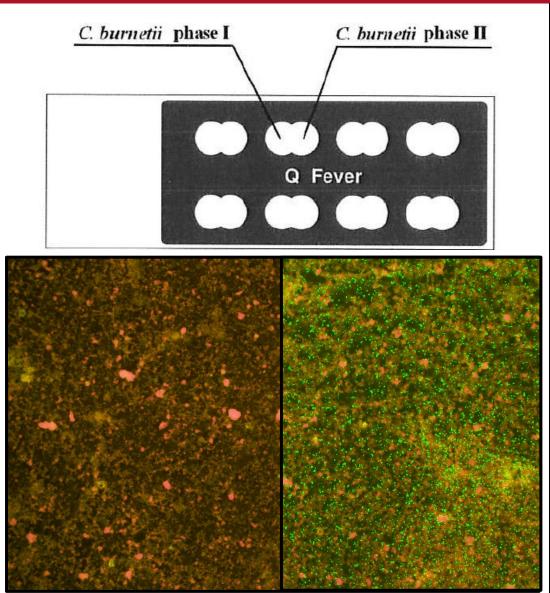
• Q fever

- Introduction and epidemiology
- Transmission and clinical manifestations
- Microbiology
- Laboratory testing
- Treatment
- Summary

Serology by IFA

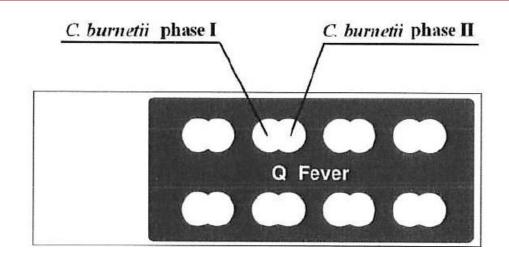
- Use phase variation of *Coxiella burnetti* to assess for acute and chronic infections
 - Phase II > Phase I = Acute infection
 - Phase I > Phase II = Chronic infection
- Looking for antibodies (IgM and IgG) to phase I and phase II antigens
 - IgG can be negative early in infections, so IgM is typically ordered




Image courtesy of the Microbial Immunology II lab at ARUP Laboratories

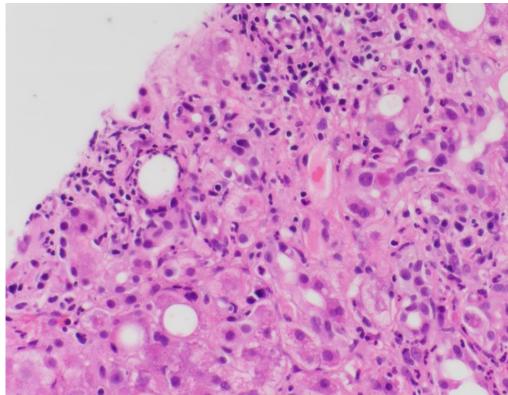
Serology by IFA

- Two-stage sandwich IFA assay
 - 1. Patient serum is diluted in PBS and added to the slide wells
 - 2. Fluorescein-labeled anti-IgM/IgG added giving a positive green reaction
- Positive needs the bright fluorescence and correct bacterial morphology
- Screen at 1:16, then titer to endpoint
- Interpretation:
 - Acute Q fever: Phase II > Phase I
 - Convalescent sera 4x increase in Phase II IgG
 - Phase II IgG >/= 200, IgM >/= 50
 - Chronic Q fever: Phase I IgG > Phase II IgG (usually Phase I IgG >800 and clinical findings)


Images courtesy of the Microbial Immunology II lab at ARUP Laboratories

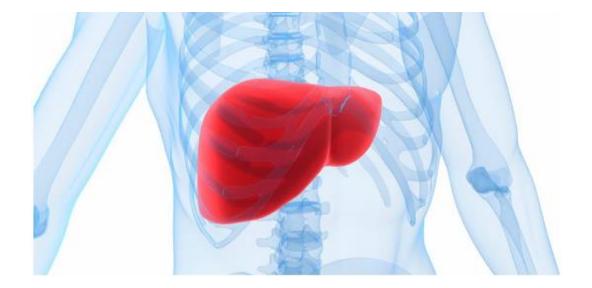
Serology by IFA

- Two-stage sandwich IFA assay
 - 1. Patient serum is diluted in PBS and added to the slide wells
 - 2. Fluorescein-labeled anti-lgM/lgG added giving a positive green reaction
- Positive needs the bright fluorescence and correct bacterial morphology
- Screen at 1:16, then titer
- Interpretation:
 - Acute Q fever: Phase II > Phase I
 - Convalescent sera 4x increase in Phase II IgG
 - Phase II IgG >/= 200, IgM >/= 50
 - Chronic Q fever: Phase I IgG > Phase II IgG (usually Phase I IgG >800 and clinical findings)


Patient results: Phase I IgM: Positive, 1:256 Phase I IgG: Positive, 1:512 Phase II IgM: Positive, 1:4096 Phase II IgG: Positive, >1:131072

Tissue biopsy

- The fibrin ring granulomas within a tissue specimen are characteristic of *Coxiella* (liver, bone marrow...)
- Ring granulomas can be seen with other etiologies such as viral infections like EBV and CMV



- Clinical case presentation
- Review of liver anatomy and function
- Laboratory values
- Epstein-Barr Virus
 - Background and clinical features
 - Laboratory testing
- Liver biopsy results

• Q fever

- Introduction and epidemiology
- Transmission and clinical manifestations
- Microbiology
- Laboratory testing
- Treatment
- Summary

Treatment

- Acute Q fever:
 - Asymptomatic patients are not treated
 - Symptomatic patients can receive a short course of Doxycycline (14 days) as first line therapy (other agents include Bactrim or Clarithromycin)
- Special considerations
 - Pregnant women: Can be treated even when asymptomatic with Bactrim
 - High risk groups (valve/vascular disease, antiphospholipid antibodies...) should receive Doxycycline plus Hydroxychloroquine with extended treatment between 12-18 months
- Chronic Q fever: Doxycycline plus Hydroxychloroquine for 18-24 months

Prognosis


- Only 1-5% of patients with Acute Q fever are hospitalized
- Mortality is low with Acute Q fever (self-limited illness)
- Chronic Q fever: the mortality rate can be high

¹²Raoult, Didier. Treatment and prevention of Q fever.

- Clinical case presentation
- Review of liver anatomy and function
- Laboratory values
- Epstein-Barr Virus
 - Background and clinical features
 - Laboratory testing
- Liver biopsy results
- Q fever
 - Introduction and epidemiology
 - Transmission and clinical manifestations
 - Microbiology
 - Laboratory testing
 - Treatment
- Summary

Case Summary

- Patient was diagnosed with Acute Q fever hepatitis and put on Doxycycline for 14 days.
- Repeat serology was performed after 5 months
 - Initial Serology:
 - Phase I IgM: Positive, 1:256
 - Phase I IgG: Positive, 1:512
 - Phase II IgM: Positive, 1:4096
 - Phase II IgG: Positive, >1:131072
 - Repeat serology:
 - Phase I IgG: Positive, 1:4096
 - Phase II IgG: Positive, 1:65,536
- He is asymptomatic so he will continue to be monitored given his rise in Phase I titers.

Understand the interpretation of serologic testing for Epstein-Barr Virus

Interpretation of EBV-Specific Serologic Results				
Infection	VCA IgM	VCA IgG	EA	EBNA
No previous	Negative	Negative	Negative	Negative
Acute/primary	Positive	Positive	Positive/negative	Negative
Recent	Positive/negative	Positive	Positive/negative	Positive/negative
Past	Negative	Positive	Negative	Positive
Reactivation ^a	Positive/negative	Positive	Positive	Positive

2. Describe the basic microbiology and transmission of *Coxiella burnetii*

- Q fever is a zoonotic disease caused by the intracellular gram negative bacteria *Coxiella burnetii*
- Individuals that work or live near farm animals are at highest risk for infection through aerosolized forms
- Small cell variant is more infectious and can survive extracellularly
- Large cell variant is the replicating form within the macrophages
- 3. Explain the serologic testing for Q fever and how we differentiate between acute and chronic infections
 - Acute Q fever: Phase II > Phase I
 - Convalescent sera 4x increase in Phase II IgG
 - Phase II IgG >/= 200, IgM >/= 50
 - Chronic Q fever: Phase I IgG > Phase II IgG (usually Phase I IgG >800 and clinical findings)

References

- 1. Kalra A, Yetiskul E, Wehrle CJ, and Tuma F. Physiology Liver. NIH STAT Pearls. Updated May 8, 2022. <u>https://www.ncbi.nlm.nih.gov/books/NBK535438/</u>
- 2. Genzen JR, Slev, PR. Liver disease evaluation. ARUP consult. <u>https://arupconsult.com/content/liver-disease-evaluation</u>
- 3. Cha HJ, Hwang J, Lee LE, Park Y, Song JJ. The significance of cytoplasmic antinuclear antibody patterns in autoimmune liver disease. PLoS One. 2021;16(1):e0244950. Published 2021 Jan 7. PMID: 33411840
- 4. Aronson, MD and Auwaerter PG. Infectious mononucleosis. UptoDate. Updated March 19, 2021. Accessed on 9/22/2022. <u>https://www-uptodate-com.ezproxy.lib.utah.edu/contents/infectious-mononucleosis?search=EBV%20&source=search_result&selectedTitle=2~150&usage_type=default&display_rank=2#H11</u>
- 5. Hillyard, DR, Slev PR. Epstein-Barr Virus EBV. ARUP consult. <u>https://arupconsult.com/content/epstein-barr-virus</u>
- 6. Jackson, Brian. Coxiella burnetti Q fever. <u>https://arupconsult.com/content/coxiella-burnetii</u>
- 7. Q fever. Centers for disease control and prevention. Updated August 6, 2021. <u>https://www.cdc.gov/qfever/stats/index.html</u>
- 8. Raoult, Didier. Microbiology and epidemiology of Q fever. UpToDate. Updated April 2022. Accessed on 5/29/2022. <u>https://www-uptodate-com.ezproxy.lib.utah.edu/contents/microbiology-and-epidemiology-of-q-fever?search=coxiella%20burnetii&source=search_result&selectedTitle=3~72&usage_type=default&display_rank=3</u>
- 9. Raoult, Didier. Clinical manifestations and diagnosis of Q fever. UpToDate. Updated May 2022. Accessed on 5/29/2022. <u>https://www-uptodate-com.ezproxy.lib.utah.edu/contents/clinical-manifestations-and-diagnosis-of-q-fever?search=coxiella%20burnetii&source=search_result&selectedTitle=1~72&usage_type=default&display_rank=1</u>
- 10. van Schaik EJ, Chen C, Mertens K, Weber MM, Samuel JE. Molecular pathogenesis of the obligate intracellular bacterium Coxiella burnetii. Nat Rev Microbiol. 2013;11(8):561-573. PMID: 23797173
- 11. Howe D, Mallavia LP. Coxiella burnetii exhibits morphological change and delays phagolysosomal fusion after internalization by J774A.1 cells. Infect Immun. 2000;68(7):3815-3821. PMID: 30543852
- 12. Raoult, Didier. Treatment and prevention of Q fever. UpToDate. Updated April 2022. Accessed on 5/29/2022. <u>https://www-uptodate-com.ezproxy.lib.utah.edu/contents/treatment-and-prevention-of-q-fever?search=coxiella%20burnetii&source=search_result&selectedTitle=2~72&usage_type=default&display_rank=2</u>
- 13. van Roeden SE, Wever PC, Kampschreur LM, et al. Chronic Q fever-related complications and mortality: data from a nationwide cohort. *Clin Microbiol Infect*. 2019;25(11):1390-1398.

