Molecular Subtypes of Renal Cell Carcinoma

Deepika Sirohi, MD University of Utah and ARUP Laboratories 2019 Annual Park City Anatomical Pathology Update

• No disclosures

Learning Objectives

- Familiarization with the genomic landscape of Renal Cell Carcinoma
- Integrative approach to Molecular Subtyping of RCCs
- Challenges to molecular classification of RCCs

Outline

Introduction

- · Treatment strategies
- Genomic Landscape of RCC
 - Histopathological and molecular subtypes
 - Genomic correlates with clinical outcomes
 - Integrated Multi-omics across RCC subtypes
- Immunotherapy Biomarkers
- Challenges to Molecular Classification of RCCs
- Conclusion

Renal Cell Carcinomas: Subtypes

		<1%
Clear cell RCC	75%	Medullary RCC
Papillary RCC	15%	Collecting duct carcinoma
Chromophobe RCC	5%	MITF-RCC
Clear cell papillary RCC	4%	FH deficient RCC and/or HLRCC
Unclassified RCC	4%	SDH deficient RCC
		Tubulocystic RCC
		Multilocular cystic renal neoplasm of low malignant potential
		Mucinous tubular and spindle cell carcinoma
		Acquired cystic disease-associated RCC

Hseieh JJ et al. Genomic classifications of renal cell carcinoma: a critical step towards the future application of personalized kidn cancer care with pan-omics precision. J Pathol 2018; 244: 525–537

RCC: Prognosis

- About 30% of patients present with metastatic disease at the time of diagnosis
- An additional 30% of patients with localized RCC, despite surgery with curative intent, eventually develop recurrence or metastasis

Hseleh JJ et al. Genomic classifications of renal cell carcinoma: a critical step towards the future application of personalized kidney cancer care with pan-omics precision. J Pathol 2018; 244: 525–537

RCC: Treatment Strategies

NCCN Guidelines

• Determined by

- Tumor Stage
- Amenability to resection
- Co-morbidities
- Systemic Therapy: Surgically unresectable/advanced disease/ metastatic disease

Targeted therapies approved for RCC	
VEGFR inhibitors	Sunitinib, Pazopanib, Bavacizumab
mTORC1 inhibitors	Temsorilimus, Everolimus
C-MET inhibitors	Cabozantinib
FGFR inhibitors	
Cytokines	Interluekin-2, Interferon-α
Anti-PD1/PD-L1	Nivolumab

• Other targetable pathways/ alterations:

- Hippo
 NRF2-ARE
 MAP kinase
 ALK
 CHECK2/PBRM1
 ATM/BRCA2

Hseieh JJ et al. Genomic classifications of renal cell carcinoma: a critical step towards the future application of personalized kidney cancer care with pan-omics precision. J Pathol 2018; 244: 525–537

Genomic Landscape of RCC

Hereditary RCC Syndromes

		THE PLACE PROPERTY OF	1.11.70.17.11
Syndromes	Gene	of Renal Tumors	Age at Diagnosis
VHL disease	FHL 3p25-26	Clear cell RCC	25%-45% 40 y
Hereditary papillary RCC	MET 7q31	Papillary RCC type 1	Unknown < 60 y
BHD syndrome	BHD 17p11.2	Hybrid oncocytic, chromophobe RCC Oncocytoma Clear cell RCC Pareller RCC	34% 50 y
HLRCC	FH 1q42-43	Heterogenous, but predominantly papillary RCC type 2-like	254-2156 46 y
TSC	TSC1/TSC2 9q34/16p13	AML Renal cysts Papillary RCC Clear cell RCC Oncoeviona	2%-4% 30 y
Hereditary paraganglioma- pheochromocytoma syndrome Hereditary sickle cell hemoglobinopathy and medullary RCC	SDHB/SDHC/SDHD 1p36/1q21/11q23	Clear cell RCC Medullary RCC	5%+15% 30 y 10-30 y
Germline PTEN mutation Cowden syndrome	PTEN 10q22-23	Clear cell RCC Papillary RCC Chromoshohe RCC	3496 40 y
Hyperparathyroidism-jaw tumor syndrome	HRPT2 1q21-32	Mixed epithelial and stromal tumor Papillary RCC Wilms tumor	100
BAP1 mutations and familial kidney cancer	BAPI 3p21	Clear cell RCC	
Constitutional chromosome 3 translocation RCC	Unknown chromosome 3	Clear cell RCC	Unknown

Adeniran AJ et al. Hereditary Renal Cell Carcinoma Syndromes: Clinical, Pathologic, and Genetic Features. Am J Surg Pathol 2015;39(12): e1-e18

Ricketts et al. The Cancer Genome Atlas Comprehensive Molecular Characterization of Renal Cell Carcinoma. Cell Reports 2018;23:313–326

4

4 Classification Categories

- Histopathology
- Molecular Pathology
- Genomic correlates with clinical outcomes
- Integrated Multi-omics across RCC subtypes

Hseieh JJ et al. Genomic classifications of renal cell carcinoma: a critical step towards the tuture application of personalized kidney cancer care with pan-omics precision. J Pathol 2018; 244: 525–537

Histopathology and Molecular Pathology

Clear Cell RCC

Majority-sporadic

• <5%- inherited cancer syndromes

The Cancer Genome Atlas Research Network. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature. 2013;499:43-49

Clear Cell RCC

- VHL/ 3p LOH (90%)
- Deletion of 3p >90% (biallelic)- 3 genes
 - VHL: Tumor suppressor
 - PBRM1- chromatin remodeling complex
 - BAP1, SETD2, JARID1
- Epigenetic silencing in ~7%, mutually exclusive with mutation
- Inactivation of VHL serves as the fundamental driver event of human ccRCC

Casuscelli J et al. Molecular Classification of Renal Cell Carcinoma and Its Implication in Future Clinical Practice. Kidney Cancer 1 (2017) 3–13

				1054	04	ч :	19750		pru :	950	1 feet		
BAP1	185			and the second	ALC: NO.	STATES AND IN COLUMN			1113011778	110000	10.00 million (1997)		
TPSD	*	4000100			-	and summer		annin a	2719323.51	NUMBER OF STREET	D.MCENDER		
KSWSC	16%		THURSDAY	The state of the s				nomma	01113031010	CORC MONTH	IN ACCURATE A		
PERMIT	485	9401010	11111941	10,000		(111)+()+()+()+()+()+()+()+()+()+()+()+()+()		*****	1111001101	0140.0001010	1942111		
NUDR	**		10010111140	1001010	(82)1111	10111X (1999) (1111)		11111111111	HEISTIN	0081330110	113223122		
TECS	e.		11100	DERIN	S	ULD II DEBNICT II		umennis	10000011	CONTRACTOR D	asimme.		
PRIMA	**	110410		100306	\$1011.4	1011110	第二式15日1月日		11001	6000000000	12012035		
86122	38%	20020446		10001000	e(me))(e)	#11119#\$4111#413##	*****	IIII KKRI	(111)+++	energe en la compañía de la compañía	1020103104		
NF2		HINI		1110391111	\$3.000	montennum	11100010100	NULLING TES	2002000	H =01000	12.4101010		
VHL.	19%		4000))()(44)					66 (189) 46 }	(addated) (##S31111		
tC: 335/	418 (B	0%)											
RC: 3354	418 (B	on.)		sa kowsc		PERMIT		, erronu			manda	WT (20%)	
C: 3354	418 (B	n.)		sa kowsc	1	Parties		,erota			net	WT (20%)	
C: 3354 0494 1755 6046	418 (B 135	0%) E	-			Plates		-				WT (20%)	
C: 3354 0AP1 1755 KOMIC POINT	418 (B 13% 13%	0%) 200-000 4 4		isi kowsc		Pater						WT (20%)	
C: 335/ 0AP1 1753 KONIC PBRM MIDR	418 (B	0%) 2000 4 1000 1000 1000 1000 1000 1000 10				Patient		#7%				WT (20%)	
C: 335/ 0AP1 1713 KONIC PORE MIDE TECI	10 (0)× 15 E = 4 (5	0%) 200-000 4 1 1 1 1 1				Paten		-				WT (20%)	
C: 335/ 0AP1 1753 KOWIC PARM MIDR TECT PARAGA		· · ·				FURN		-				WT (2014)	
C: 335/ 0474 1755 KONIC PERMI MITOR TECT PERMIC SCITE		•••) •••••••••••••••••••••••••••••••••	un 1		,	Parent						WT (20%)	
C: 335/ 0494 1755 KONIC Passe MITOR TECT PASSA SCIDE N73		•••)	•		, <u></u>	-						WT (20%)	
C: 335/ 0494 1793 KONIC PARM MITOR TRC1 PROCK SCTDE NF2 WL					, <u>1</u>	PERMI						WT (20%)	

Casuscelli J et al. Molecular Classification of Renal Cell Carcinoma and Its Implication in Future Clinical Practice. Kidney Cancer 1 (2017) 3-13

Common Genetic Alterations in ccRCCs

Mutations in 93% of ccRCC	Percentage of cases	Clinical Impact	
VHL	>70%	Diagnostic	No prognostic impact
PBRM1	~ 40%		Longer survival on MTORI
BAP1	~ 15-20%		High grade, poor outcomes on VEGFR TKI/ MTOR Inhibitor
SETD2	~ 7-11%		Worse survival, associated with metastases
KDM5C	~ 14%		Longer survival on VEGF TKI
TP53	2.2 - 8%		High grade, decreased survival
PIK3CA			Targetable
MTOR	~ 5%		Response to MTORI, mutations in metastases better response than mutations in primary
TSC1			Targetable
NF2	~ 3%		Targetable

Casuacelli J et al. Molecular Classification of Renal Cell Carcinoma and its Implication in Future Clinical Practice. Kidney Cancer 1 (2017) 3–13 Heeleh JJ et al. Genomic classifications of rend cell carcinoma: a critical dep towards the future application of personalized kidney cancer care with para-motics precision. J Path VGR 24: 425–43

Copy Number Changes: ccRCCs

The Cancer Genome Atlas Research Network. Compre-

Papillary RCC

lecular characterization of clear cell renal cell carcinoma. Nature. 2013;499:43-49

- Gain of chromosomes 7 and 17
- Loss of Y chromosome
- Hereditary pRCC
 - c-Met gene mutations, AD
 - No extra renal manifestations
 - Bilateral, multiple, multifocal type 1 pRCCs/ adenomas
- Sporadic Type 1 pRCC- MET gene mutations (13%)
 MET inhibitors
- Type 2 pRCC- Heterogeneous group

ive Molecular Chara 2016;374:135-45. tion of Papillary Renal-Cell Carcinoma. N Engl J Med

Papillary RCCs

- Type 1 pRCC: MET (trisomy 7): Targetable with MET/VEGFR2 inhibitors
- Type 2 pRCC
 - CDKN2A silencing (Chr 9p21 loss); decreased overall survival
 - SETD2 mutations

The Cancer Genome Atlas Research Network. Comprehe

- TFE3 fusions
- NRF2-ARE (antioxidant response element) pathway (increased expression)
 - CUL3 mutations
 - NRF2 mutations
- NF2 mutations: Targetable by YES1 kinase inhibitors (Dasatinib)
- TERT promoter mutations

Hseleh JJ et al. Genomic classifications of renal cell carcinoma: a critical step towards the future application of personalized kidney cancer care with pan-omics precision. J Pathol 2018; 244: 525–537

A Distinct pRCC Subtype

- CpG Island Methylator Phenotype
 - Universal hypermethylation of CDKN2A promoter
 - 5.6% of papillary RCCs
 - FH mutations ~ 56%)
 - Earlier age of presentation
 - Decreased survival
 - · Warburg like metabolic shift

The Cancer Genome Atlas Research Network. Comprehensive Molecular Characterization of Papillary Renal-Cell Carcinoma. N Engl J Med 2016;374:135-45.

Molecular Differences Between Type 1 &2 pRCCs

		Type 1	Type 2
NF2	Hippo signaling pathway	2.8%	10.0%
SMARCB1, PBRM1	SWI/SNF complex	19.7%	26.7%
SETD2, KDM6A, BAP1	Chromatin remodeling pathways	35.2%	38.3%

The Cancer Genome Atlas Research Network. Comprehensive Molecular Characterization of Papillary Renal-Cell Carcinoma. N Engl J Med 2016;374:135-45.

Copy Number Changes: pRCCs

The Cancer Genome Atlas Research Network. Compre

Chromophobe RCC

sive Molecular Characterization of Papillary Renal-Cell Carcinoma. N Engl J Med 2016;374:135-45.

- Multiple complex chromosomal losses (Hypodiploid)
- 1, 2, 6, 10, 13, 17 and 21 (7-set)
- TERT promoter (10%)
- TP53 (32%)
- PTEN (9%)
- Mitochondrial DNA mutations

Davis CF et al. The somatic genomic landscape of chromophobe renal cell carcinoma.Cancer Cell. 2014; 26(3): 319–330

Aggressive Chromophobe RCCs

- Metastatic ChRCC: ~10-15%
- Casuscelli et al
 - Integrated analyses of 79 chRCC patients, 38 with metastatic disease
 - Whole-genome sequencing
 - Targeted exome sequencing
 - OncoScanFACETS
 - FISH High-risk genomic features: Any of the 3
 - TP53 mutation
 - PTEN mutation
 - Imbalanced chromosome duplication

Aggressive Chromophobe RCCs

Casuscelli J et al. Genomic landscape and evolution of metastatic chromophobe renal cell carcinoma. JCl Insight. 2017;2(12):e92688

Unclassified RCC

- 4-5%
- Adverse histological features, heterogeneous
- Aggressive biological potential
- Higher rate of nodal and/or distant metastases at presentation
- Low survival rates

Aggressive Unclassified RCCs

55%

- NF2 loss and dysregulated Hippo–YAP signaling (18%)
 Worse outcomes
- Hyperactive mTORC1 signaling (26%)
 Better outcomes, therapeutic target
- MTOR, TSC1, TSC2, PTEN
- FH: worse outcomes
- ALK

45%

- Chromatin modulation (13%)
 - Intermediate outcomes(SETD2, BAP1, KMT2A/C/D,
 - PBRM1)
- DNA damage response (8%)
- (TP53, CHEK2, BRCA2)No recurrent molecular
- features (24%)

Chen Y-B et al. Molecular analysis of aggressive renal cell carcinoma with unclassified histology reveals distinct subsets. Nat Commun. 2016;7:13131

Other RCC Subtypes

RCC Subtype	Molecular Alterations
Collecting Duct Carcinoma	NF2 (5/17) SETD2 (4/17) SMARCB1 (3/17) FH (2/17) CDKNZA (2/17)
Medullary RCC	SMARCB1/INI: LOH/ balanced translocations/ biallelic loss
TFE3 RCC	Translocations with SFPQ, ASPSCR1, PRCC, NONO, CLTC, KSHRP, and LUC7L3
Sarcomatoid RCCs	TP53, BAP1, ARID1A, PTEN, CDKN2A, and NF2

Hseieh JJ et al. Genomic classifications of renal cell carcinoma: a critical step towards the future application of personalized kidney cancer care with pan-omics precision. J Pathol 2018; 244: 525–537

Genomic correlates with clinical outcomes

DNA methylation patterns

- 10 subtypes
 KIRC + KIRP (type 2): hypermethylation and poor outcomes
 4 subtypes of KIRC, 2 of which were enriched for BAP1 and associated with poor outcomes
 2 subtypes of KIRP

KIRP	Morphological pattern	Outcomes
Cluster 1	Type 1, MET mutation, Chr 7+	Low tumor stage. Best survival
Cluster 2a	Type 2	Low tumor stage, Best survival
Cluster 2b	Type2, unclassified papillary RCC,	High tumor stage. Poor survival
Cluster 2c	CIMP tumor subtype NRF2-ARE pathway alterations	Worst survival

Chen F et al. Multilevel Genomics-Based Taxonomy of Renal Cell Carcinoma. Cell Reports 2016;14, 2476-2489

DNA Methylation

The Cancer Genome Atlas Research Network. Co ular characterization of clear cell renal cell carcinoma. Nature. 2013;499:43-49

miRNA: CCRCC

- miR-21: worse outcomes, role in metabolism
- miR-21, miR-10b, miR-30a: inversely correlated with DNA promoter methylation
- Significant component of epigenetic regulation

er Genome Atlas Re ion of clear cell renal cell carcinoma. Nat ure. 2013;499:43-49 The Ca

miRNA: ccRCC

The Cancer Genome Atlas Research Network. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature. 2013;499:43-49

Metabolomic classification ccRCC

• mCluster 1-4

- mCluster 2: High glutathione, worse outcomes
- mCluster 3: High dipeptides, worse outcomes
- mCluster 4: Low glutathione, better outcomes
- mCluster 1: Low dipeptides, better outcomes

Metabolomic classification

The Cancer Genome Atlas Research Network. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature. 2013;499:43-49

• Up regulation of oxidative phosphorylation genes: Ch-e

- Down regulation of oxidative phosphorylation genes
 - ccRCC, P.CIMP-e
 - MAP kinase: ccRCC
 - NRF2-ARE (antioxidant response element), HIPPO pathways: P.CIMP-e
 - Loss of NF2: P.CIMP-e
 - PI3K/AKT/mTOR: ccRCC, pRCC

Chen F et al. Multilevel Genomics-Based Taxonomy of Renal Cell Carcinoma. Cell Reports 2016;14, 2476-2489

The Cancer Genome Atlas Research Network. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature. 2013;499:43-49

ular characterization of clear cell renal cell carcinoma. Nature. 2013;499:43-49

The Cancer Genome Atlas Research Network. Comprehensive molec

Integrated Multi-omics across RCC subtypes

metha me

The Cancer Genome Atlas Research Network. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature. 2013;499:43-49

9	Мо	lecu	lar	Su	bt∖	/pes
					,	

sive Molecular Characterization of Papillary Renal-Cell Carcinoma. N Engl J Med 2016;374:135-45.

The Cancer Genome Atlas Research Network. Comprehen

RCC Subtype	Molecular Subtype	Molecular and Clinical Correlates
Clear cell	m1	Chromatin remodeling gene alterations, PBRM1 mutations: ccA
	m2	ссВ
	m3	CDKN2A deletions, PTEN mutations: ccB
	m4	BAP1 and mTOR mutations
Papillary Type 1	P-e.1a	Better
	P-e.1b	Intermediate
Papillary Type 2	P-e.2	Hypermethylation; intermediate; included cases with TFE3 fusions
	P-CIMP-e	Hypermethylation; enriched for hereditary pRCC, CDKN2A loss/silencing, FH
Chromophobe	Ch-e	

Chen F et al. Multilevel Genomics-Based Taxonomy of Renal Cell Carcinoma. Cell Reports 2016;14, 2476–2489 Casuscelli J et al. Molecular Classification of Renal Cell Carcinoma and Its Implication in Future Clinical Practice. Kidney Cancer 1 (2017) 3–13

Immunotherapy Biomarkers

PD-L1/PD-1 Inhibitors

- ccRCC: High expression of several immunotherapy gene targets
 - Greater levels of immune infiltrates
- Many poor risk and Sarcomatoid tumors
 - High levels of PD-L1 expression
 - Greatest relative benefit with nivolumab over everolimus
- CheckMate 025 trial: Higher PD-L1 expression
 - Poor survival
 - No correlation with increased response rate to Nivolumab

Chen F et al. Multilevel Genomics-Based Taxonomy of Renal Cell Carcinoma. Cell Reports 2016;14, 2476-2489 Özdemir BC et al. Current and Future Applications of Novel Immunotherapies in Urological Oncology: A Critical Review of the Literature. Eur Urol Focus. 2018 April 4(3):442-454

PD-1/PD-L1 Challenges

- Different antibodies
- · Immune infiltrating cells evaluated
- Intratumoral and intertumoral heterogeneity of PD-L1 expression
- Temporal evolution of PD-L1 status during the development of treatment resistance
- Variation in PD-L1 expression according to the level of tissue hypoxia

Mutational Load

RCC: Low mutational burden

Alexandrov LB et al. Signatures of mutational processes in human cancer. Nature 2013; 500:415

 Highest number of small insertions and deletions of all cancer types

- Insertions/ deletions: result in 3 times more immunogenic highbinding affinity neoantigens
- Microsatellite instability, BRCA1: targetable
- Turajlic S et al. Insertion-and-deletion-derived tumour-specific neoantigens and the immunogenic phenotype: a pan-cancer analysis. Lancet Oncol. 2017 Aug;18(8):1009-1021

Challenges to Molecular Classification of RCCs

- Marked intra and inter-tumoral heterogeneity
- Mutations different between primary and metastatic tumors
 Most genes are tumor suppressors with loss of function, not
- directly targetable
- Methylation, copy number loss, miRNA: not detectable by DNA mutation platforms
- Bionikk (phase 2BIOmarker driven trial)
- Molecular classification
- Nivolumab plus ipilimumab/ Nivolumab
- Nivolumab plus ipilimumab/ TKI

Conclusion

- Integrated multi-omics approach
- Molecular subtypes of RCCs
- Ongoing research
- To improve therapeutic approach to RCCs
- · Identify biomarkers relevant to therapy
- Research into RCC subtypes

