THE EVOLVING CLASSIFICATION OF SOFT TISSUE TUMORS

Christopher D.M. Fletcher, M.D., FRCPath Brigham and Women's Hospital and Harvard Medical School, Boston MA

WHO Classification of Tumours of Soft Tissue and Bone Lyon, April 24-28, 2002

MAJOR STRENGTHS

Broad concensus view
New approach to authorship
More extensive text / illustrations
Inclusion of genetics
Timeliness

SIGNIFICANT CHANGES FROM 1994 CLASSIFICATION

Approach to biologic potential
Approach to fibrohistiocytic tumours
Approach to haemangiopericytoma
Recategorisation of 'intermediate'
vascular tumours

Numerous 'new' entities

More tumours of 'uncertain differentiation'

BENIGN CATEGORY

Most benign soft tissue tumours do not recur locally. Those that do recur do so in a non-destructive fashion and are almost always readily cured by complete local excision. Exceedingly rarely (almost certainly <1/50,000 cases, and probably even less than that), a morphologically benign lesion may give rise to distant metastases. This is entirely unpredictable on the basis of conventional histological examination and, to date, has been best documented in cutaneous benign fibrous histiocytoma.

INTERMEDIATE CATEGORY

(Locally aggressive)

Soft tissue tumours in this category often recur locally and are associated with an infiltrative and locally destructive growth pattern. Lesions in this category do not have any evident potential to metastasise but typically require wide excision with a margin of normal tissue in order to ensure local control. The prototypical lesion in this category is desmoid fibromatosis.

INTERMEDIATE CATEGORY

(Rarely metastasising)

Soft tissue tumours in this category are often locally aggressive but, in addition, show the well documented ability to give rise to distant metastases in occasional cases. The risk of such metastases appears to be <2% and is not reliably predictable on the basis of histomorphology. Metastasis in such lesions is usually to lymph node or lung. Prototypical examples in this category include plexiform fibrohistiocytic tumour and so-called angiomatoid fibrous histiocytoma.

MALIGNANT CATEGORY

In addition to the potential for locally destructive growth and recurrence, malignant soft tissue tumours (known as soft tissue sarcomas) have significant risk of distant metastasis, ranging in most instances from 20% to almost 100%, depending upon histological type and grade. Some (but not all) histologically low grade sarcomas have a metastatic risk of only 2-10%, but such lesions may advance in grade in a local recurrence, and thereby acquire a higher risk of distant spread (e.g., myxofibrosarcoma and leiomyosarcoma).

World Health Organization Classification of Tumours

Pathology & Genetics

Tumours of Soft Tissue and Bone

Edited by Christopher D.M. Fletcher, K. Krishnan Unni, Fredrik Mertens

CONTEMPORARY CONCENSUS CLASSIFICATION

- NOT A TEXTBOOK

REASONS TO HAVE CLASSIFICATIONS

- Reproducible diagnostic criteria
- Better determine biologic potential
- Better understand intrinsic biology
- Reflect conceptual evolution

WHO Classification of Soft Tissue and Bone, Consensus and Editorial meeting University Hospital Zurich, Switzerland, 18-20 April 2012

SIGNIFICANT CHANGES FROM 2002 CLASSIFICATION

- 'MFH' is gone
- 'Haemangiopericytoma' is gone
- Pericytic (perivascular) tumours better defined
- GIST and nerve sheath tumours now allocated to this volume
- Category of undifferentiated sarcomas introduced
- Some "new entities" added
- More genetic data added

"NEW ENTITIES"

Pseudomyogenic (ES-like) haemangioendothelioma

Hybrid nerve sheath tumours

Acral (digital) fibromyxoma

Haemosiderotic fibrolipomatous tumour

Phosphaturic mesenchymal tumour

ADIPOCYTIC TUMOURS Benign

Lipoma

Lipomatosis

Lipomatosis of nerve

Lipoblastoma(tosis)

Angiolipoma

Myolipoma

Chondroid lipoma

Extrarenal angiomyolipoma

Extra-adrenal myelolipoma

Spindle cell/pleomorphic lipoma

Hibernoma

ADIPOCYTIC TUMOURS

Intermediate (locally aggressive)

Atypical lipomatous tumour / well differentiated liposarcoma

Malignant

Dedifferentiated liposarcoma

Myxoid liposarcoma

Pleomorphic liposarcoma

Liposarcoma, not

otherwise specified

FIBROBLASTIC / MYOFIBROBLASTIC TUMOURS Benign (1)

Nodular fasciitis

Proliferative fasciitis (?)

Proliferative myositis (?)

Myositis ossificans and fibro-

osseous pseudotumour of digits

Ischaemic fasciitis

Elastofibroma

Fibrous hamartoma of

infancy

Fibromatosis colli

Juvenile hyaline fibromatosis

Inclusion body fibromatosis

NODULAR FASCIITIS

t(17;22)(p13;q12.3) (cryptic)

USP6-MYH9

ICD-0: 8828/0 Never had a code before!

FIBROBLASTIC / MYOFIBROBLASTIC TUMOURS Benign (2)

Fibroma of tendon sheath

Desmoplastic fibroblastoma

Mammary-type myofibroblastoma

Calcifying aponeurotic fibroma

Angiomyofibroblastoma

Cellular angiofibroma

Nuchal-type fibroma

Gardner fibroma

Calcifying fibrous tumour

FIBROBLASTIC / MYOFIBROBLASTIC TUMOURS

Intermediate category

Locally aggressive
Superficial fibromatoses
Desmoid-type fibromatoses
Lipofibromatosis
Giant cell fibroblastoma

Rarely metastasising

Dermatofibrosarcoma protuberans
Solitary fibrous tumour
Inflammatory myofibroblastic tumour
Low grade myofibroblastic sarcoma
Myxoinflammatory fibroblastic
sarcoma/atypical myxoinflammatory
fibroblastic tumour

Infantile fibrosarcoma

FIBROBLASTIC / MYOFIBROBLASTIC TUMOURS

Malignant

Adult fibrosarcoma

Myxofibrosarcoma

Low grade fibromyxoid sarcoma

Sclerosing epithelioid fibrosarcoma

LGFMS/SEF MOLECULAR GENETICS

PURE LGFMS

Most have t(11;16)(q33;p11) FUS-CREB3L2 Few have t(11;16)(p11;p11) FUS-CREB3L1 Basically all are MUC4 immunopositive

PURE SEF

If MUC4 +ve (70%) - ? Up to 90% have *EWSR1-CREB3L1*

? 30-40% have *FUS* rearrangement (some with *CREB3L1* or *CREB3L2*)

MUC4 -ve – FUS negative, otherwise unknown

HYBRID LGFMS/SEF

All are MUC4 +ve – Most have either FUS or EWSR1 rearrangement (usually with CREB3L2)

SO-CALLED FIBROHISTIOCYTIC TUMOURS

Benign

Tenosynovial giant cell tumour

- localised
- diffuse

Deep benign fibrous histiocytoma

Intermediate (rarely metastasising)

Plexiform fibrohistiocytic tumour Giant cell tumour of soft tissues

SMOOTH MUSCLE TUMOURS

Deep leiomyoma Leiomyosarcoma (excluding skin)

PERICYTIC (PERIVASCULAR) TUMOURS

Glomus tumour (and variants)
Glomangiomatosis
Malignant glomus tumour
Myopericytoma
Myofibroma
Myofibromatosis
Angioleiomyoma

PERICYTIC (PERIVASCULAR) TUMOURS NEW GENETIC DATA

- Multiple familial glomus tumours result from germline *GLMN* mutation
- NF-1 may be associated with multiple digital glomus tumours (which show NF-1 inactivation)
- NOTCH2 or NOTCH3 rearrangement identified in 60% of sporadic soft tissue glomus tumours
- BRAF (10%) and KRAS (rare) mutations identified in sporadic glomus tumours

PERICYTIC (PERIVASCULAR) TUMOURS KEY POINTS

- Morphologic continuum, includes myofibroma
- Angioleiomyoma fits better here
- Could ultimately be renamed as haemangiopericytoma!

SKELETAL MUSCLE TUMOURS

Benign

Rhabdomyoma adult type fetal type genital type

Malignant

Embryonal rhabdomyosarcoma (incl. botryoid, anaplastic)

Alveolar rhabdomyosarcoma (incl. solid, anaplastic)

Pleomorphic rhabdomyosarcoma

Spindle cell/sclerosing rhabdomyosarcoma

SPINDLE CELL RHABDOMYOSARCOMA

- 1st described 1992 / 1993
 Long regarded as variant of embryonal
- Commonest in children / adolescents
- Mainly paratesticular
- 5 year survival > 90% in children
- Easily confused with other spindle cell sarcomas

SPINDLE CELL RHABDOMYOSARCOMA IN ADULTS

- Mainly 3rd / 4th decades
- Males > females
- Head and neck commonest (50%)
 - but wide range of sites
- More aggressive than in children

? Relationship to sclerosing rhabdo Morphologic overlap in 15-20% of cases

SCLEROSING RHABDOMYOSARCOMA

- 1st described 2000 / 2002 (Mentzel et al; Folpe et al)
- Affects adults & children / adolescents
- Head & neck = Limbs
- Prognosis still somewhat uncertain
- No clear genetic data until recently
- Easily confused with angiosarcoma or perhaps even osteosarcoma

SPINDLE CELL / SCLEROSING RHABDOMYOSARCOMA POST-WHO GENETIC FINDINGS

- NCOA2 gene rearrangements in congenital/ infantile spindle cell rhabdo (Mosquera et al)
- MYOD1 mutations in spindle cell rhabdo in adults (Szuhai et al)
- MYOD1 (+PI3K) mutations in BOTH spindle cell and sclerosing rhabdos in children and adults (distinct from NCOA2 group) (Agaram et al)
- MYOD1 (+ PI3K) mutations in "aggressive embryonal" rhabdos (Kohsaka et al)

SPINDLE CELL/SCLEROSING RHABDOMYOSARCOMA KEY POINTS

- No clear relationship to embryonal rhabdo
- Form a morphologic continuum
- Affect both children (paratesticular ++) and adults (head/neck > limbs)
- Worse prognosis in adults
- Treatment uncertain
- Recent genetic data very informative and support separate classification

VASCULAR TUMOURS

Benign Haemangiomas synovial venous arteriovenous (malformation) intramuscular **Epithelioid haemangioma Angiomatosis** Lymphangioma

VASCULAR TUMOURS

Intermediate (locally aggressive)

Kaposiform haemangioendothelioma

Intermediate (rarely metastasising)

Retiform haemangioendothelioma

Papillary intralymphatic

angioendothelioma

Composite

haemangioendothelioma

Pseudomyogenic (epithelioid

sarcoma-like)

haemangioendothelioma

Kaposi sarcoma

Malignant

Epithelioid

haemangioendothelioma

Angiosarcoma of soft tissue

NB NEW GENETIC DATA

PSEUDOMYOGENIC ('EPITHELIOID SARCOMA-LIKE') HAEMANGIOENDOTHELIOMA CLINICAL FEATURES

Young adults
Males > females ++
80% limbs - leg > arm
Multiple nodules - usually < 3 cm
Multiple planes - skin > subcutis > muscle > bone
Often painful

Metastasis infrequent - ? Indolent / delayed

CHONDRO-OSSEOUS TUMOURS

Soft tissue chondroma

Extraskeletal mesenchymal chondrosarcoma

Extraskeletal osteosarcoma

GASTROINTESTINAL STROMAL TUMOURS

GIST, benign
GIST, uncertain malignant potential
GIST, malignant

PROPOSED GUIDELINES FOR DEFINING RISK OF AGGRESSIVE BEHAVIOUR IN GISTs (NCI 2002)

	Size	Mitotic Count	
Very low risk	< 2 cm < 5 per 50 HPF		
Low risk	2-5 cm	≤ 5 per 50 HPF	
Intermediate risk	≤ 5 cm	6-10 per 50 HPF	
Intermediate risk	5-10 cm	≤ 5 per 50 HPF	
	> 5 cm	> 5 per 50 HPF	
High risk	> 10 cm	Any mitotic rate	
	> Any size	> 10 per 50 HPF	

Supplement

Management of GIST

Tumor Paramete	ers	Ris	Risk for Progressive Disease*(%), Based on Site of Origin			
Mitotic Rate	Size	Stomach	Jejunum/Ileum	Duodenum	Rectum	
≤ 5 per 50 HPF	≤ 2 cm	None (0%)	None (0%)	None (0%)	None (0%)	
	> 2, ≤ 5 cm	Very low (1.9%)	Low (4.3%)	Low (8.3%)	Low (8.5%)	
	> 5, ≤ 10 cm	Low (3.6%)	Moderate (24%)	Insufficient data	Insufficient data	
	> 10 cm	Moderate (10%)	High (52%)	High (34%)	High (57%)	
	≤ 2 cm	None [†]	High [†]	Insufficient data	High (54%)	
	> 2, ≤ 5 cm	Moderate (16%)	High (73%)	High (50%)	High (52%)	
	> 5, ≤ 10 cm	High (55%)	High (85%)	Insufficient data	Insufficient data	
	> 10 cm	High (86%)	High (90%)	High (86%)	High (71%)	

Data are based on long-term follow-up of 1055 gastric, 629 small intestinal, 144 duodenal, and 111 rectal GISTs.

Abbreviations: GIST, gastrointestinal stromal tumor; HPF, high-power field.

Adapted from Miettinen M, Lasota J. Gastrointestinal stromal tumors: pathology and prognosis at different sites. Sem Diagn Pathol 2006;23:70–83.

^{*}Defined as metastasis or tumor-related death.

[†]Denotes small numbers of cases.

Table 10.1 Prognosis for patients with g Zoom out (Ctrl+Minus) omal tumours (GIST), based on long-term follow-up

	Tumour parameters	5	Progressive disease during follow-up (% of patients) ^a			
Prognostic group	Size	Mitotic rate per 50 HPFs	Gastric GISTs	Small-intestinal GISTs		
1	≤2	≤ 5	0	0		
2	> 2 ≤ 5	≤ 5	1.9	4.3		
3a	> 5 ≤ 10	≤ 5	3.6	24		
3b	> 10	≤ 5	12	52		
4	≤2	> 5	0 _p	50 ^b		
5	> 2 ≤ 5	> 5	16	73		
6a	> 5 ≤ 10	> 5	55	85		
6b	> 10	> 5	86	90		

HPF, high-power field

^a Based on observation of 1784 patients in studies carried out by the Armed Force Institute of Pathology (AFIP). Intestinal GISTs generally follow the behaviour of small-intestinal GISTs.

^b Denotes tumour categories with very small numbers of cases. Data based on reference {1885} WHO 2013

SDH-DEFICIENT GISTS KEY POINTS REGARDING A NEW GROUP

- Approx. 5-7% of gastric GISTs
- Wild-type KIT and PDGFRA
- Distinct subsets of GIST pediatric-type,
 Carney-Stratakis syndrome, Carney triad
- Epithelioid, multinodular, show LVI
- Frequent nodal mets but v. indolent
- All SDHB-neg by IHC but few mutations
- 25% also SDHA-neg predicts mutation

NERVE SHEATH TUMOURS

Benign (1)

Schwannoma (including variants)

Melanotic schwannoma

Neurofibroma (including variants)

Plexiform neurofibroma

Perineurioma

Granular cell tumour

NERVE SHEATH TUMOURS

Benign (2)

Dermal nerve sheath myxoma
Solitary circumscribed neuroma
Ectopic meningioma
Nasal glial heterotopia
Benign Triton tumour
Hybrid nerve sheath tumours

HYBRID NERVE SHEATH TUMOURS

Hybrid schwannoma / perineurioma
Hybrid neurofibroma / schwannoma
Hybrid granular cell tumour / perineurioma
Hybrid neurofibroma / perineurioma (?)

World Health Organization (2013) Classification of Tumours of Soft Tissue

NERVE SHEATH TUMOURS

Malignant

Malignant peripheral nerve sheath tumour

Epithelioid malignant peripheral nerve sheath tumour

Malignant Triton tumour

Malignant granular cell tumour

Ectomesenchymoma

World Health Organization (2013) Classification of Tumours of Soft Tissue

TUMOURS OF UNCERTAIN DIFFERENTIATION

Benign

Acral fibromyxoma

Intramuscular myxoma

(incl. cellular variant)

Juxta-articular myxoma

Deep 'aggressive' angiomyxoma

Pleomorphic hyalinizing angiectatic tumour

Ectopic hamartomatous thymoma

ACRAL (DIGITAL) FIBROMYXOMA CLINICAL FEATURES

Adults; M > F
Toes / fingers ++
Often adjacent to nail bed
Dermal / subcutaneous nodule
Most < 2 cm

Local recurrence ~ 10%

World Health Organization (2013) Classification of Tumours of Soft Tissue

TUMOURS OF UNCERTAIN DIFFERENTIATION

Intermediate (locally aggressive)
Haemosiderotic fibrolipomatous tumour

Intermediate (rarely metastasising)

Atypical fibroxanthoma

Angiomatoid fibrous histiocytoma

Ossifying fibromyxoid tumour

(incl. atypical / malignant)

Mixed tumour / Myoepithelioma / Myoep. Carcinoma Phosphaturic mesenchymal tumour

HAEMOSIDEROTIC FIBROLIPOMATOUS TUMOUR

(aka "haemosiderotic fibrohistiocytic lipomatous lesion")

CLINICAL FEATURES

Adults > children
Females slightly > males
Ankle / foot ++
Subcutaneous / poorly marginated
Usually < 5 cm

Local recurrence 30%
Possible potential to progress (?)

HAEMOSIDEROTIC FIBROLIPOMATOUS TUMOUR

(aka "haemosiderotic fibrohistiocytic lipomatous lesion")

PATHOLOGIC FEATURES

Admixture, in variable proportions, of:

- Fibroblastic spindle cells
- Mature adipocytes
 Fascicular or whorled pattern
 Usually prominent haemosiderin
 Scattered osteoclastic giant cells
 Mitoses scarce

Occasional atypia / pleomorphism

HAEMOSIDEROTIC FIBROLIPOMATOUS TUMOUR

(aka "haemosiderotic fibrohistiocytic lipomatous lesion")

ISSUES OF INTEREST

Reactive (??) vs. neoplastic Significance of atypia Biologic potential Relationship to other entities ??

MYXOINFLAMMATORY FIBROBLASTIC SARCOMA CLINICAL FEATURES

Adults, wide age range
Equal sex distribution
Slowly growing, ill-defined mass
Distal extremities
- especially hands and feet
Subcutaneous / tenosynovial
Usually < 5 cm

Local recurrence common Metastasis very rare

MYXOINFLAMMATORY FIBROBLASTIC SARCOMA AND

HEMOSIDEROTIC FIBROLIPOMATOUS TUMOR SHARED CLINICOPATHOLOGIC & GENETIC FEATURES

Predilection for distal extremities, esp. feet
Recur ++ - but? almost never metastasise
Isolated cases show hybrid morphologic features
Both show reciprocal t(1;10)(p22;q24)
Gene fusion TGFBR3 – MGEA5
Leads to up-regulation of FGF8
Also amplified 3p in ring chromosomes

Lambert et al, Virchows Arch 2001; 438:509-512 Wettach et al, Cancer Genet Cytogenet 2008; 182:140-143 Hallor et al, J Pathol 2009; 217:716-727 Antonescu et al, Genes Chromosomes & Cancer 2011; 50:757-764

ATYPICAL FIBROXANTHOMA CLINICAL FEATURES

Recurrence infrequent No metastasis if carefully diagnosed

PHOSPHATURIC MESENCHYMAL TUMOUR KEY POINTS

- Mostly middle-aged adults almost any site
- Most assoc. with tumour-induced osteomalacia due to FGF23 production
- Varied morphology but most are myoid or myopericytoma-like with blueish matrix and granular calcification
- Vast majority are benign

TUMOURS OF UNCERTAIN DIFFERENTIATION

Malignant

Synovial sarcoma Desmoplastic small round

Epithelioid sarcoma cell tumour

Alveolar soft part sarcoma Extra-renal rhabdoid tumour

Clear cell sarcoma of soft tissue PEComa

Extraskeletal myxoid chondrosarcoma Intimal sarcoma

Extraskeletal Ewing sarcoma

World Health Organization (2013) Classification of Tumours of Soft Tissue

UNDIFFERENTIATED / UNCLASSIFIED SARCOMAS

Undifferentiated spindle cell sarcoma
Undifferentiated pleomorphic sarcoma
Undifferentiated round cell sarcoma
Undifferentiated epithelioid sarcoma
Undifferentiated sarcoma NOS

World Health Organization (2013) **Classification of Tumours of Soft Tissue**

NEW GENETICS (1)

Fibroblastic / Myofibroblastic tumours

Nodular fasciitis Myxoinflammatory

t(17;22)(p13;q12.3) t(1;10)(p22;q24)

USP6-MYH9

TGFBR3-MGEA5

fibroblastic sarcoma

- also seen in HFLT and hybrid lesions

Low grade fibromyxoid t(7;16)(q33;p11) FUS-CREB3L2

sarcoma

t(11;16)(p13;p11)

FUS-CREB3L1

- also seen in a subset of SEF and hybrid lesions

(Post-WHO – Solitary fibrous tumor inv12(q13q13) NAB2-STAT6)

World Health Organization (2013) **Classification of Tumours of Soft Tissue**

NEW GENETICS (2)

Vascular tumours

Pseudomyogenic

haemangioendothelioma

Epithelioid

haemangioendothelioma

t(7;19)(q22;q13)

t(1;13)(p36.3;q25)

WWTR1-CAMTA1

SERPINE1-FOSB

Angiosarcoma (breast)

Angiosarcoma (secondary)

KDR mutation (25%)

MYC amplification (100%)

FLT4 coamplification (25%)

(Post-WHO – EHE – new subset with YAP1-TFE3 gene fusion)

EHE Subset with TFE3 gene overexpression

cell sarcoma

World Health Organization (2013) Classification of Tumours of Soft Tissue

NEW GENETICS (3)

Tumours of Uncertain Differentiation

Angiomatoid 'FH'	t(2;22)(q33;q12)	
	t(12;16)(q13;q12) EVSATF1 t(12;16)(q13;p11) FUS-ATF1	(rare)
OFMT	PHF1 rearrangement (on 6p21)fused with EP400 (55%) or EPC1	(80%)
Myoepithelial tumours (mainly malignant)	EWSR1 rearrangement (45% of with various partners	of cases)
PEComa	TSC2 deletion /rearrangement TFE3 rearrangement (rare, distinct subset)	
Undifferentiated round	t(4.19)(a35.a13.1) CIC-D	IIXA

t(10;19)(q35;q26)

CIC-DUX4

ISSUES STILL TO ADDRESS

- Outdated diagnostic concepts
- Nomenclatural anomalies
- Lack of biologic understanding in some broad areas
- Genetic uncertainties

ADULT FIBROSARCOMA CURRENT STATUS

- Most lesions so classified in the past would nowadays be relabelled synovial sarcoma or MPNST
- Malignant fibroblastic tumors in adults do exist eg myxofibrosarcoma, LGFMS, fibrosarcomatous DFSP
- Other less well-defined tumors may well belong in this category, but fibrosarcoma NOS is not currently a useful concept
- Our ability to define fibroblasts/fibroblastic neoplasms is still very limited
- The fact that some but not all fibroblastic tumors form a continuum with myofibroblastic tumors adds another level of complexity

FIBROBLASTIC SARCOMAS PROBLEMS TO CONSIDER

- Virtual non-existence of adult-type fibrosarcoma as presently defined
- Difficulties in reproducibly defining fibroblastic differentiation
- Undoubted existence of fibroblastic sarcomas, some with reproducible features, some without

NOMENCLATURAL ANOMALIES

Practical considerations vs scientific accuracy
How best to define nomenclature?
Historical precedent vs line of differentiation
(which may be unknown) vs genetics
Potential consequences for patient care
(Isn't it our job to re-educate clinicians?)
Fossilising sociologic issues

Is there another branch of science that is quite so slow to change?

NOMENCLATURAL ANOMALIES POSSIBLE WAYS FORWARD

- Openness to gradual revision on the basis of good/rational evidence
- Willingness to accept genetic definitions (as with leukemias)
- Committment to bringing clinicians along with us (perhaps thro' concensus conferences)
- ? 'Radical' approaches, dismissing time-honored terminology ? Less likely to succeed
- ? WHO Working Groups should formally validate terminology

LACK OF BIOLOGIC UNDERSTANDING

Vascular tumours – par excellence! Neoplasm vs malformation / hamartoma How to define a neoplasm? Relevance of clonality / mixed cell types Limited genetic data Blood vascular vs lymphovascular Potential to be overtaken by clinicoradiologic classification

SOFT TISSUE TUMORS EXAMPLES OF GENETIC OVERLAP

- Tumors with similar morphology
- Tumors that may show hybrid morphology
- Seemingly totally unrelated tumors
- Tumors of different lineages

EXAMPLES OF GENETIC OVERLAP

- Tumors with similar morphology
 e.g. spindle cell lipoma, cellular angiofibroma, mammary-type myofibroblastoma
- Tumors that may show hybrid morphology e.g. DFSP and giant cell fibroblastoma
- Seemingly totally unrelated tumors e.g. clear cell sarcoma and angiomatoid "MFH"
- Tumors of different lineages
 e.g. infantile fibrosarcoma and secretory carcinoma

RELATIONSHIP BETWEEN SPINDLE CELL LIPOMA, MAMMARY-TYPE MYOFIBROBLASTOMA & CELLULAR ANGIOFIBROMA

- Generally different anatomic sites does this influence the phenotype?
- Morphologic overlap with subtle differences
- Immunophenotypic differences
- Same rearrangement/loss of 13q14 (Rb)
- All benign/rarely recur
- Cellular angiofibroma may perhaps have potential for progression

SOFT TISSUE TUMORS TYPES OF GENETIC OVERLAP

- Frequently involved genes in multiple different tumor types, e.g. EWSR1, HMGA2
- Interchangeable genes in multiple distinct tumor types, e.g. *EWSR1* and *FUS*
- Shared fusion genes in tumors thought to be distinct entities, e.g. *TGFBR3-MGEA5*
- Shared fusion genes in tumors which appear totally unrelated, e.g. EWSR1-ATF1

IMPACT OF GENETICS SHARED GENE REARRANGEMENTS

- EWSR1
- FUS
- *CREB1*
- *ATF1*
- *HMGA-2*

Schematic representation of frequent structural aberrations of chromosome 12 in benign solid tumors

Ewing's sarcoma

FLI1 >80%

ERG 10-15%

ETV1 (<5%)

E1AF (<5%)

FEV (<5%)

DSRCT WT1

Clear cell sarcoma ATF1

Extraskel myxoid chondrosarc CHN & others

[2001]

SHARED FUSION GENES IN SOFT TISSUE SARCOMAS

ETV6-NTRK3

- Infantile fibrosarcoma
- Cellular mesoblastic nephroma
- Secretory carcinoma of breast (and salivary gland)
- Rare cases of AML, CML &ALL
- Radiation-assoc^d thyroid carcinomas

EWSR1-ATF1 EWSR1-CREB1

- Clear cell sarcoma
- Melanocytic
- Deep soft tissue/GI
- Adults (mainly young)
- > 50% metastasise

Angiomatoid "MFH"

- Lineage unknown ?? dendritic cell
- Mostly subcutaneous
- Commonest < 20 years
- < 2% metastasise

- Evidence of relationship?
- Biologic / mechanistic significance ?
- Impact on classification schemes?
- Variants of a single 'molecular' entity?
- Potential impact on diagnosis

IMPACT OF GENETICS WHERE NEXT?

- Need to more sharply define diagnostic role
- Need to reassess role in classification how best to reconcile/prioritise genotype with phenotype?
- Need to determine significance (pathogenetic and ?? clinical) of such prominently shared fusion genes – are the downstream signaling events the same ?
- Need to keep up this work!

OTHER UNANSWERED QUESTIONS WHICH MIGHT IMPACT TAXONOMY

- Cell of origin in many/most tumor types?
- Line of differentiation in many tumor types?
- Nature of multistep process in mesenchymal tumorigenesis?

WHO CLASSIFICATION OF SOFT TISSUE TUMOURS 2013 WEAKNESSES

- Some 'newer' entities or genetic findings left out
- Continued nomenclatural anomalies
- Rigidity of ICD-0 coding system
- Increasing problem/challenge of genetic overlap

CONCLUSIONS

- There remain important opportunities to improve the classification of soft tissue tumours
- Objectivity and diagnostic reproducibility are both the goals as well as the validation of any classification scheme
- Cytogenetics / molecular genetics have been invaluable thus far, but their impact has become more complex and confusing
- Old habits die hard Need to maintain open-mindedness to allow ongoing evolution

WHO Classification of Tumours of Soft Tissue and Bone

Edited by Christopher D.M. Fletcher, Julia A. Bridge, Pancras C.W. Hogendoorn, Fredrik Mertens

