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Learning Objectives

 Define key roles and responsiblilities in the machine learning lite-cycle.

« Explore techniques for validating, deploying, and monitoring models.

« Reinforce these concepts within a relevant, lab-based example.
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Defining A Machine Learning Pipeline
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Library(tidymodels)
libraryCarrow)

train <-

read_feather("https://figshare.com/ndownloader/files/45407401") |>
select(contam_comment, bun:sodium) |>

(;] mutate(contam_comment = factor(contam_comment))
‘ }’] (EE recipe <- recipe(contam_comment ~ ., data = train)
|\/| O d e‘ model - <- boost_tree(mode = "classification") |> set_engine("xgboost")

workflow <- workflow() |> add_recipe(recipe) |> add_model(model)

1
2
3
4
5
)
7
8
9

fit <- workflow |> fit(data = train)
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Testing The Model

Sodium | 147!

Potassium 3.5

Model Output

Output: 0.97
Label: Positive

Applicable:
Explanation: v

Chloride| 119!

CO2 171

Creatinine 0.9

BUN 22

Calcium 6.6 !

Glucose 86
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Successful Validation of Machine Learning Pipelines
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Ground Truth Definition

Evaluating all feasible options for assigning the gold-
standard labels by which predictions are evaluated.
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Applicability

Identifying inputs that diverge from
training data across or within features.
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Successful Implementation of Machine Learning Pipelines

Key Roles and Responsibilities
Subject Matter Experts

- Align implementation to fit unmet clinical need.
- - Evaluate failure modes and off-target effects.
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Data drift or concept drift causes ML pipelines to lose performance.
Closed-loop systems are crucial for identifying when this occurs.
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Data drift or concept drift causes ML pipelines to lose performance.
Closed-loop systems are crucial for identifying when this occurs.
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Performance Drift

Data drift or concept drift causes ML pipelines to lose performance.
Closed-loop systems are crucial for identifying when this occurs.
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- Difficult to detect and correct without input from subject-matter experts.
Data Drift . . .
Detection Correction Updating Models
Uni - Threshold Flags - Input Preprocessing Replacement models can be
ni- | Moving Averages - Analyzer Recalibration continuously retrained and evaluated
to replace deteriorating models
Multi- |- Principal Components | - Input Transformation before they impact live workflows.
UItI= 1 Mahalanobis Distance | - Model Retraining Champion Challengers




A Note On Regulatory Guidance
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Predetermined Change Control Plans for Machine Learning- Enabled Medical Devices:
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In 2021, the U.S. Food and Drug Administration (FDA), Health Canada, and the U.K's Medicines and
Healthcare products Regulatory Agency (MHRA) jointly identified 10 guiding principles that can inform the
development of Good Machine Learning Practice (GMLP). GMLP supports the development of safe, effective,
and high-quality artificial intelligence/machine learning technologies that can learn from real-world use and,

in some cases, improve device performance.

In this document, FDA, Health Canada, and MHRA jointly identified 5 guiding principles for predetermined
change control plans. These principles draw upon the overarching GMLP guiding principles, in particular principle
10, which states that deployed models are monitored for performance and re-training risks are managed.

Advancements in digital health technologies include artificial e/machine learning-
enabled medical devices (MLMD). Regulatory expectations that are aligned with best practices for
development and change management, such as those described in the GMLP Guiding Principles, can help
to support the quality of such devices. Ultimately, this can lead to patient benefits such as earlier
access to innovative technologies or more accurate diagnoses.

The change management process helps to ensure the ongoing safety and effectiveness of devices in the face of
change throughout the device’s total product lifecycle (TPLC). However, certain changes to MLMDs, such as
changes to a model or algorithm, may be substantive or significant. For this reason, they can require regulatory
oversight, such as additional premarket review. Such regulatory expectations may not always coincide with the
rapid pace of MLMD development.

Internationally, the medical device community is discussing the use of predetermined change control plans
(PCCPs) as a way of managing certain device changes where regulatory authorization before marketing is typically
required. PCCPs can be used to help:

* align regulatory processes with the rapid and ongoing approach to change management in MLMDs

® manage risks in a timely and ongoing fashion through monitoring, maintenance, and/or improving device
performance

* uphold high regulatory standards to ensure device safety and effectiveness.

For this document, the term PCCP describes a plan, proposed by a manufacturer, that specifies:

* certain planned modifications to a device
* the protocol for implementing and controlling those modifications and
® the assessment of impacts from modifications.

PCCPs may be developed and implemented in different ways in different regulatory jurisdictions.

One key objective of the 5 Guiding Principles for PCCPs for MLMD is to provide foundational considerations that
highlight the characteristics of rabust PCCPs. Another objective of this document is to facilitate and foster ongoing
engagement and collaboration among stakeholders on the PCCP concept for MLMD. As with the GMLP Guiding
Principles, this document intends to lay a foundation for PCCPs and encourages international harmonization.

International harmonization and stakeholder consensus on the core concepts of PCCPs will help support the
advancement of responsible innovations in the digital health space.

We welcome your continued feedback through the FDA public docket (FDA-2019-N-1185) at lations.gov, and
we look forward to engaging with you on these efforts. This work is being spearheaded by the Digital Health
Center of Excellence for the FDA, the Medical Devices Directorate Digital Health Division at Health Canada and the
software and Al team at the MHRA. Contact us directly at Digitalhealth@fda.hhs.gov, software@mhra.gov.uk, and
mddpolicypolitiquesdim@hc-sc.ge.ca.
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