Multiple Sclerosis: Clinical Features & Laboratory Evaluation

Nicole E Stanley, MD

Anatomic and Clinical Pathology, PGY-3

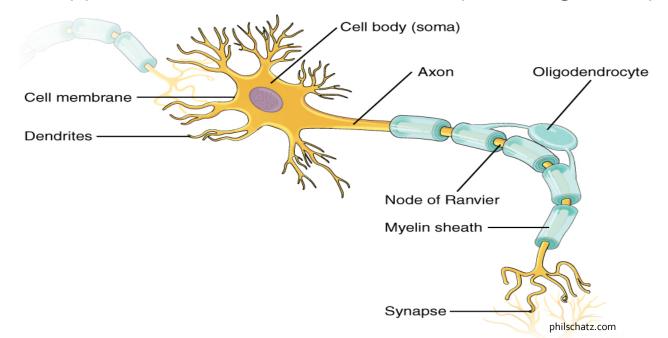
Learning Objectives

- Discuss the epidemiology, etiology, pathophysiology, and risk factors for Multiple Sclerosis (MS)
- Describe the clinical manifestations, differential diagnosis, and clinical and laboratory evaluation of MS
- Describe the clinical course, management, and monitoring of patients with MS

Case Presentation

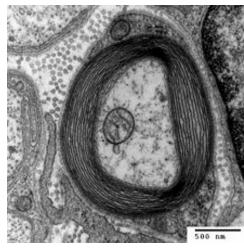
- In 2013, a 34 yo woman presented with 4 days of blurred vision and 7/10 pain in her left eye
- 2 episodes in the previous few years of numbness and tingling in left hand
 - Resolved spontaneously
- Otherwise healthy
 - 2 children
 - Grew up in Canada, moved to Utah in 2007
 - Former smoker, infrequent drinker

Learning Objectives


- Discuss the epidemiology, etiology, pathophysiology, and risk factors for Multiple Sclerosis (MS)
- Describe the clinical manifestations, differential diagnosis, and clinical and laboratory evaluation of MS
- Describe the clinical course, management, and monitoring of patients with MS

Multiple Sclerosis Definition

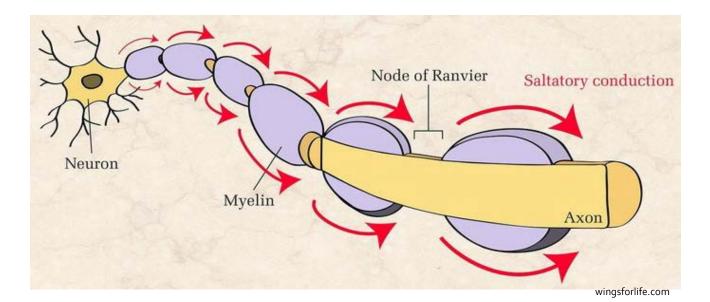
- Immune-mediated demyelinating disorder of the central nervous system (CNS)
- Multiple distinct episodes of neurologic symptoms associated with multiple distinct lesions in the white matter of the CNS
- Heterogeneous disorder with variable clinical and pathologic features
- Episodic, then chronic and progressive

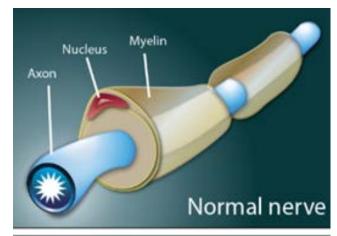

Nerve Conduction Basics

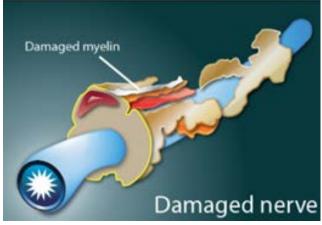
- Neuron
 - Electrically excitable cell that receives, processes, and transmits information through electrical and chemical signals
- Oligodendrocyte
 - CNS support cell that insulates neurons by creating the myelin sheath

Nerve Conduction Basics

- Myelin sheath
 - Oligodendrocyte cellular processes that wrap around neuronal axon
 - Defines "white matter"
 - 70% fat
 - 30% protein
 - Increases conduction speed and reduces ion leakage


Electron Microscopy Facility, Trinity College


library.med.utah.edu/WebPath


Nerve Conduction Basics

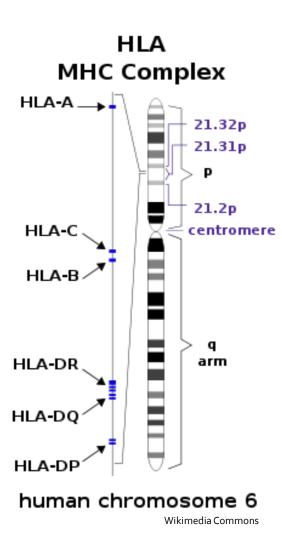
- Impulse Conduction
 - Ion movement excites the cell membrane
 - Impulse travels down length of axon to transmit signal to target
- Saltatory Conduction
 - Ion movement occurs between myelin segments
 - Myelin sheath allows the impulse to jump down the axon, increasing speed

Demyelination

healthlibrary.com

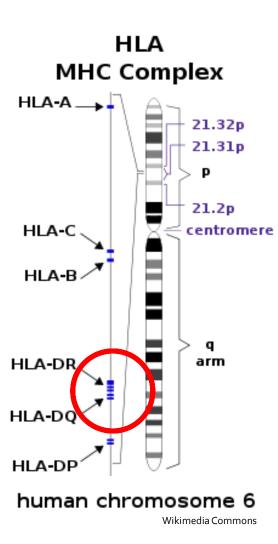
- Damage to the myelin sheath
 - Infection
 - Autoimmune process
 - Genetic
 - Metabolic derangement
- Slows or even stops impulse conduction
 - Neurologic symptoms
- Eventual damage to neuronal axon

MS Epidemiology


- Most common demyelinating disorder
 - Second most frequent CNS cause of permanent disability in young adults
- 1-25/10,000 globally
 - 1/1000 in US and Europe
- Females > Males
 - **2-3:1**
- Mean onset in 20's-30's
 - Onset in women is earlier than in men
- Geographic distribution
 - More prevalent further from the equator

MS Etiology

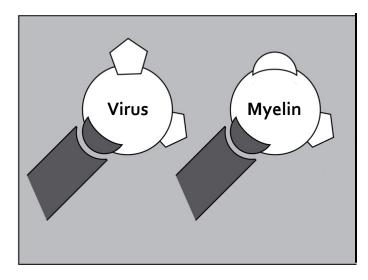
- Poorly understood
- Thought to be a combination of:
 - Genetic predisposition
 - Autoimmunity
 - Environmental exposure
- Alternate theories
 - Genetic defect of oligodendrocytes
 - Reaction to chronic viral infection

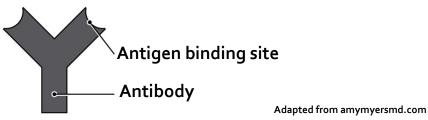

Genetics

- Not a heritable disease
- Still a genetic link
 - 30% concordance rate in monozygotic twins
 - 2-5% increased risk in siblings
 - 10% increased risk if both parents are affected
- Over 100 polymorphisms associated with MS
- Strongest association with variants in the major histocompatability complex (MHC)
 - HLA-DRB1*15:01 (DR15)
 - HLA-DQB1*o6:o2 (DQ6)
 - T-cell activation and regulation

Genetics

- Not a heritable disease
- Still a genetic link
 - 30% concordance rate in monozygotic twins
 - 2-5% increased risk in siblings
 - 10% increased risk if both parents are affected
- Over 100 polymorphisms associated with MS
- Strongest association with variants in the major histocompatability complex (MHC)
 - HLA-DRB1*15:01 (DR15)
 - HLA-DQB1*o6:o2 (DQ6)
 - T-cell activation and regulation


Autoimmunity


- Autoreactive lymphocytes, self-directed antibodies
- MS patients are at increased risk for other autoimmune diseases
- DR15 and DQ6 variants also implicated in type 1 diabetes and lupus
- Immune suppression is mainstay of treatment

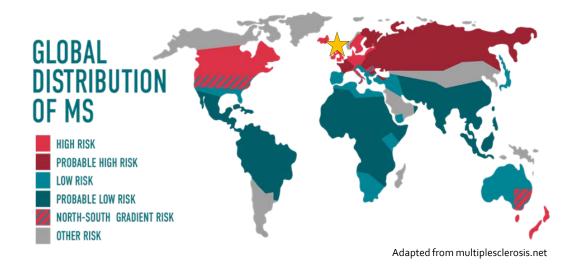
Environment: Viral infection

Infectious stimulation of immune system as MS trigger

- Molecular mimicry
 - Viral elements similar in structure or sequence to self-antigens
 - Immune cells respond to virus but also cross-react with self-antigens

Environment: Viral infection

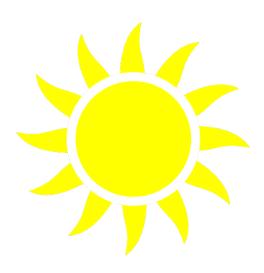
- No specific link between MS and any one virus
- Epstein-Barr Virus (EBV)
 - Infectious mononucleosis
 - EBV seropositivity is ~100% in MS patients
 - ~85-90% in general population
 - Children with MS are much more likely to be EBV positive than healthy peers
- Varicella Zoster Virus (VZV)
 - Chicken pox, shingles
 - VZV DNA in CSF of MS patients with acute relapse
 - No VZV DNA in CSF of MS patients in remission



Environment: Vaccination

- Controversial
 - Several vaccine studies show no association
- Hepatitis B Virus (HBV) vaccine
 - Several studies have shown no association
- Tetanus vaccine
 - Possible negative association with MS risk
- Human Papillomavirus (HPV) vaccine?

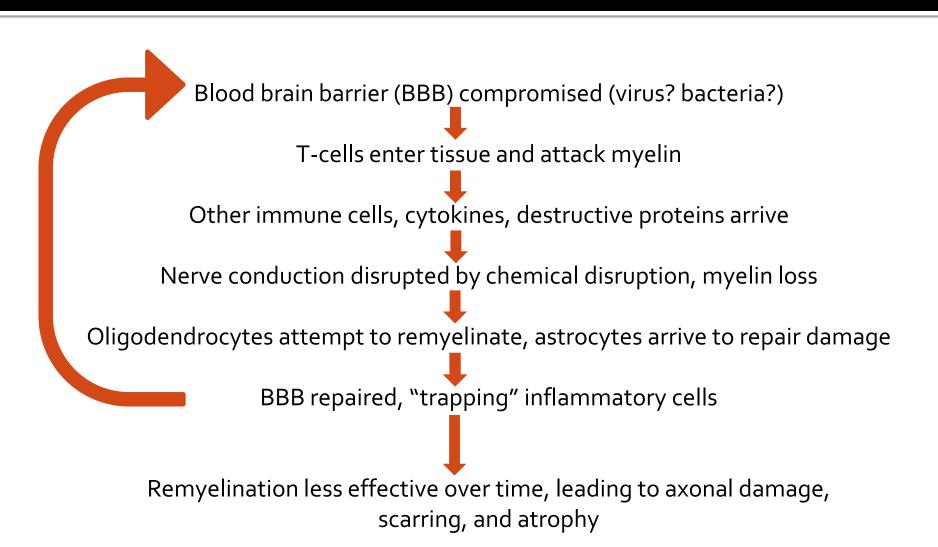
Environment: Geographic Distribution


- MS frequency highest in Northern latitudes
 - European white > Asian, African, Native American
- Migration studies
 - Individuals keep the risk of region where they spent their pre-pubertal years
- 2010 review: prevalence > incidence increases with geographic latitude
 - Confounded by healthcare access and quality, increased survival

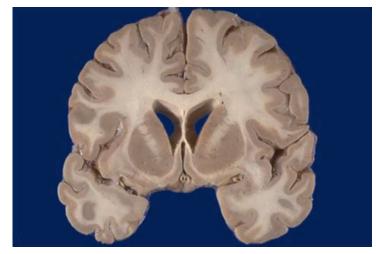
Environment: Sunlight

- Exposure to sunlight may be protective
- Proposed explanation for geographic differences

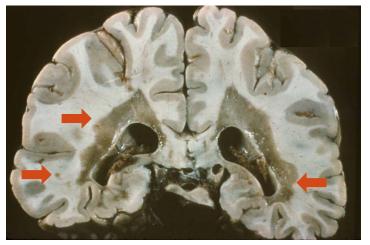
- Effects of ultraviolet radiation or vitamin D
- High serum vitamin D inversely related with
 - Risk of developing MS
 - Risk of disease progression


Environment: Other Risks

- Smoking
 - No similar link with smokeless tobacco use
- Childhood obesity
- Gastrointestinal microbiome
- Birth month
 - Gestational/neonatal environment?

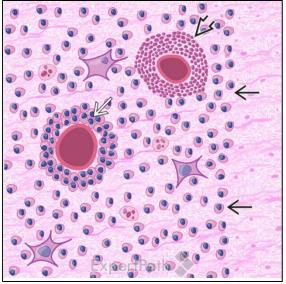


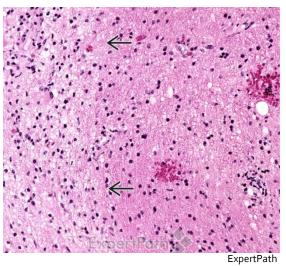
Pathophysiology



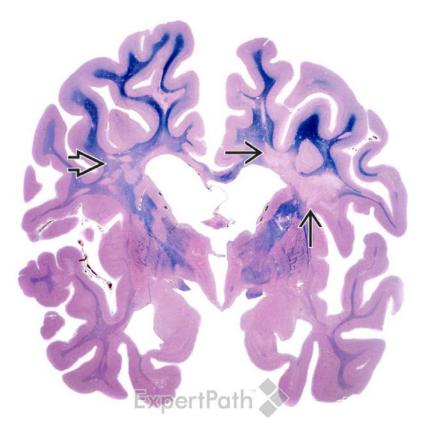
Pathologic Features: Macro

- Distinct glassy, grey-tan, firm plaques in white matter
 - Less obvious in grey matter
- Multifocal (Multiple) scars (Sclerosis)
- Plaques frequently found:
 - Around ventricles
 - Optic nerve
 - Corpus callosum
 - Brainstem (pons)
 - Cerebellum
 - Spinal cord
- Brain atrophy over time

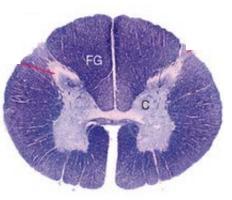

Normal

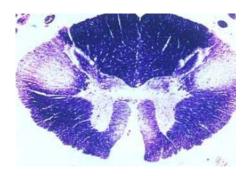


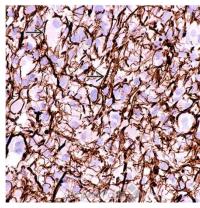
MS

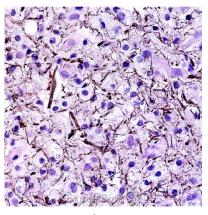

Pathologic Features: Micro

- Plaques have:
 - Pale brain tissue
 - Sharp borders with surrounding normal tissue
 - Perivascular chronic inflammation
 - Macrophages
 - Lymphocytes
 - Interstitial macrophages
 - Large stellate reactive astrocytes




Pathologic Features: Micro


Plaques, atrophy


Normal

MS

Axonal Preservation

Axonal Damage

Nolte:The Human Brain 2009 patalogia.gabeents.com ExpertPath

Learning Objectives

- Discuss the epidemiology, etiology, pathophysiology, and risk factors for Multiple Sclerosis (MS)
- Describe the clinical manifestations, differential diagnosis, and clinical and laboratory evaluation of MS
- Describe the clinical course, management, and monitoring of patients with MS

Clinical Manifestations

Acute

- Unilateral optic neuritis
 - Pain, temporary vision loss
- Double vision
- Numbness/tingling
- Weakness, clumsiness
- Gait/balance problems
- Vertigo
- Urinary incontinence
- Lhermitte sign
 - Shock sensations caused by neck flexion
- Uhthoff sign
 - Worsening of symptoms with heat

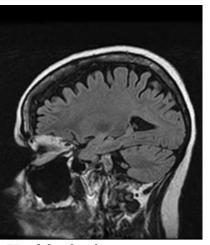
Chronic

- Progressive paralysis
- Sensory loss
- Aphasia
- Spasticity
- Rigidity
- Involuntary movements
- Fatigue
- Seizures
- Chronic pain
- Depression
- Cognitive dysfunction

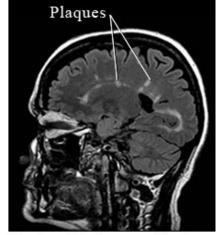
Differential Diagnosis

- Cerebrovascular
 - Stroke
 - Vasculitis
- Infectious
 - HIV
 - HSV
 - VZV
 - Tertiary syphilis
 - Lyme disease
 - Tuberculosis
 - Rubella
- Neoplastic
 - Primary CNS tumors
 - CNS lymphoma

- Primary neurologic
 - Migraine
 - Amyotrophic lateral sclerosis
 - Huntington disease
 - Guillain-Barre
- Metabolic
 - Vitamin B₁₂ deficiency
 - Copper deficiency
 - Zinc toxicity
 - Wilson disease
- Primary eye
 - Retinal detachment
 - Glaucoma
- Psychiatric
 - Somatization
 - Conversion disorder


- Autoimmune
 - Rheumatoid arthritis
 - Sjogren syndrome
 - SLE
 - Antiphospholipid syndrome
- Genetic
 - Hereditary spastic paraparesis
 - Porphyrias
 - Mitochondrial diseases
- Drug
 - Alcohol
 - Cocaine
 - Chemotherapies

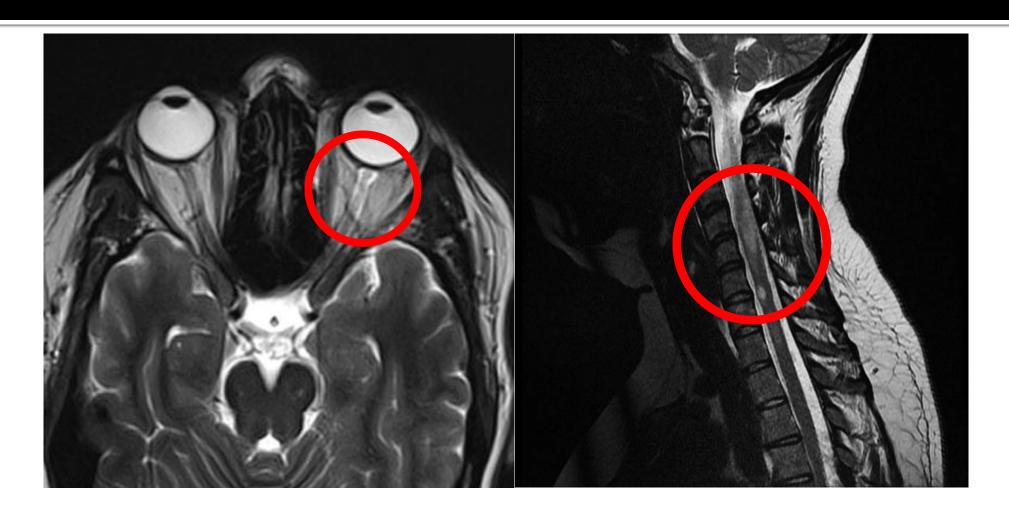
Diagnosis

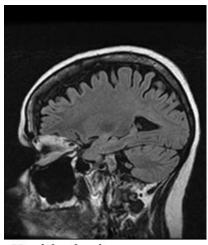

- Primarily a clinical diagnosis supported by imaging and laboratory findings
- 2010 McDonald Diagnostic Criteria
 - ≥ 2 attacks AND clinical evidence of ≥ 2 lesions
 - ≥ 2 attacks AND MRI evidence of ≥ 2 lesions
 - Combination
 - 1 year of progressive disability AND two of the following:
 - ≥ 1 brain lesion
 - ≥ 2 spinal cord lesions
 - CSF oligoclonal bands

Clinical Evaluation: Imaging

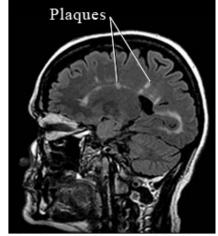
- Active lesions
 - Gadolinium enhanced MRI
 - Ill-defined, irregular large lesions
 - Blood brain barrier damage
 - Enhancement diminishes
 30-40 days following steroid
 treatment
- Chronic lesions
 - Smaller, ovoid lesions with sharp borders
- Absence of lesions does not exclude diagnosis

Healthy brain


Brain with damage (lesions or plaques) caused by MS


myhealth.alberta.ca radiopaedia.org

Clinical Evaluation: Imaging



Clinical Evaluation: Imaging

- Active lesions
 - Gadolinium enhanced MRI
 - Ill-defined, irregular large lesions
 - Blood brain barrier damage
 - Enhancement diminishes
 30-40 days following steroid
 treatment
- Chronic lesions
 - Smaller, ovoid lesions with sharp borders
- Absence of lesions does not exclude diagnosis

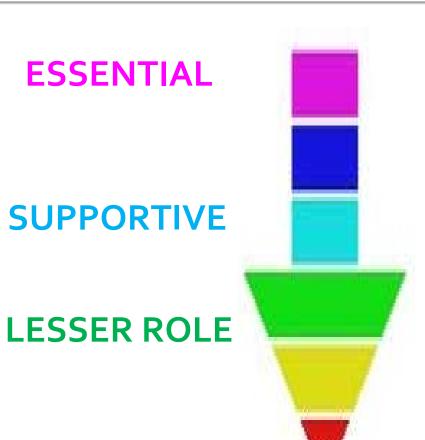
Healthy brain

Brain with damage (lesions or plaques) caused by MS

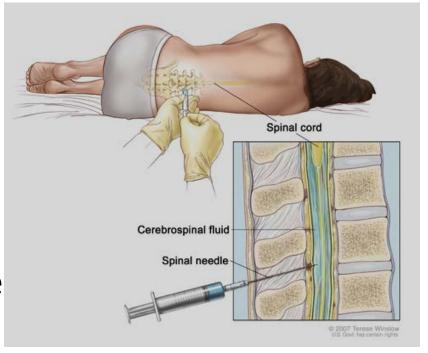
myhealth.alberta.ca radiopaedia.org

Clinical Evaluation: Evoked Potentials

- Electrical events generated in the CNS by external stimulation of a sensory organ, used to detect subclinical CNS deficits
 - Pinpoint lesions in sites not easily visualized by MRI
 - Establish multifocality


Sensory, auditory, and visual evoked potentials

Laboratory Evaluation


- CSF Oligoclonal bands
- CSF IgG Index
- CSF IgG synthesis rate
- CSF Cell count
- CSF Myelin basic protein
- CSF Anti-MBP antibodies

CSF Kappa free light chains FUTURE

Lumbar Puncture

- Medical procedure in which a needle is inserted into the spinal canal to collect CSF, usually for diagnostic testing
- "LP" or "Spinal Tap"
- Considerations
 - Small volume collection
 - "Clean" vs "bloody" tap
 - Painful, difficult procedure

Oligoclonal Band Detection

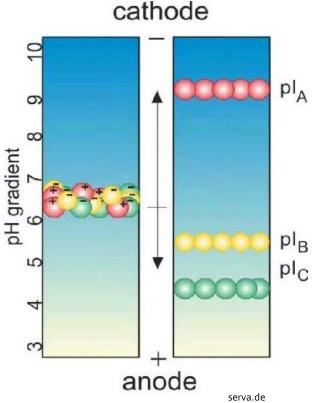
Oligoclonal bands

- Bands produced by immunofixation of oligoclonal immunoglobulins (IgG)
- IgG antibodies produced by clonally expanded B-cell populations
- Present in CSF of 95-100% of MS patients
- Gold standard laboratory test for MS
 - High sensitivity ~90-95%
 - High specificity ~85-90%

Oligoclonal Band Detection

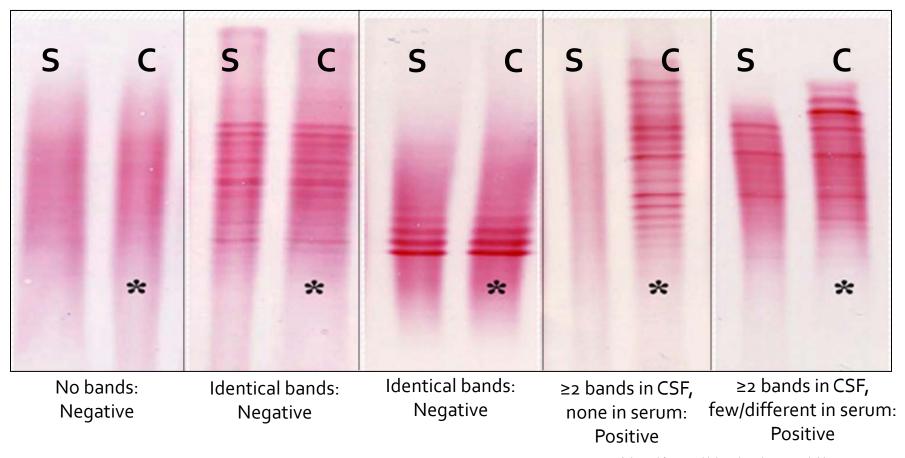
Isoelectric focusing on agarose gel

 Sample proteins travel through a continuous pH gradient under an electric field


Stop at (separated by) isoelectric point

Immunofixation with IgG antiserum

- Sample IgG binds to anti-IgG antibodies
- Precipitate out, visualized as bands


Serum and CSF analyzed in parallel

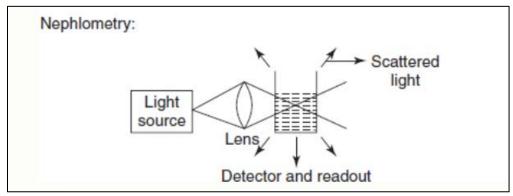
- Distinguish between IgG produced in CSF vs serum IgG
- ≥ 2 bands in CSF not in serum

Oligoclonal Band Detection

Oligoclonal band detection in CSF and serum

IgG Index

- Uses measurements of albumin and IgG in CSF and serum to:
 - Detect/correct for damage to BBB
 - Increased concentration of albumin in CSF
 - Detect IgG production in CSF
 - CSF IgG:albumin ratio compared to serum IgG:albumin ratio

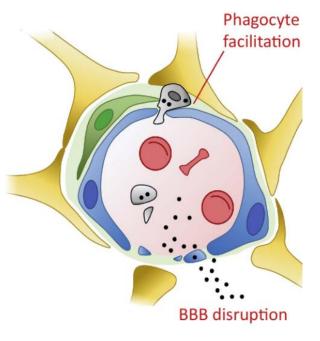

IgG Index: CSF Albumin Quotient

Albumin

- Not produced or metabolized in CSF
- Increased concentration indicates BBB breakdown

Nephelometry

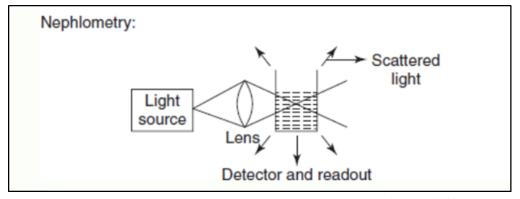
- Anti-albumin antibodies added to specimen
- Light beam passed through specimen
- Albumin:antibody complexes cause light to scatter
- Intensity of scattered light proportional to concentration



IgG Index: CSF Albumin Quotient

Serum and CSF analyzed in parallel

QAlb = <u>Albumin CSF (mg/dL)</u> Albumin Serum (g/dL)


- QAlb x 1000 = Albumin Index
 - < 9 intact BBB</p>
 - 9-14 slight impairment
 - 14-30 moderate impairment
 - > 30 severe impairment
- Caveat:
 - Traumatic LP ("bloody" tap)

IgG Index: CSF IgG Quotient

- CSF IgG measured by nephelometry
- Serum and CSF analyzed in parallel

QIgG = <u>IgG CSF (mg/dL)</u> IgG Serum (g/dL)

IgG Index

```
IgG Index = \underline{\text{OlgG}} = \underline{\text{IgG CSF (mg/dL)/IgG Serum (g/dL)}}

\underline{\text{OAlb}} Albumin CSF (mg/dL)/Albumin Serum (g/dL)
```

- Increased CSF ratio compared to that of serum indicates IgG production in the CSF
- > 0.7 abnormal
- Sensitivity 90% (>95% when oligoclonal bands are positive)
- Specificity 80%

- If BBB is damaged, permeability to albumin should be proportional to that of IgG
- Corrects for IgG in CSF due to serum leakage
- Estimates amount of IgG being produced in CSF per day
 - Uses constants representing

$$\left[IgG \ CSF \ -\frac{IgG \ serum}{369} - \left(Alb \ CSF \ -\frac{Alb \ serum}{230} \right) \times \frac{IgG \ serum \ (0.43)}{Alb \ serum} \right] \times 5$$

- If BBB is damaged, permeability to albumin should be proportional to that of IgG
- Corrects for IgG in CSF due to serum leakage
- Estimates amount of IgG being produced in CSF per day
 - Uses constants representing

$$\left[IgG \ CSF \ -\frac{IgG \ serum}{369} - \left(Alb \ CSF \ -\frac{Alb \ serum}{230} \right) \times \frac{IgG \ serum \ (0.43)}{Alb \ serum} \right] \times 5$$
Normal serum: CSF IgG

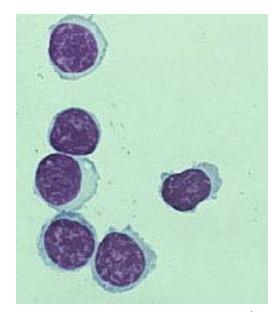
- If BBB is damaged, permeability to albumin should be proportional to that of IgG
- Corrects for IgG in CSF due to serum leakage
- Estimates amount of IgG being produced in CSF per day
 - Uses constants representing

$$\left[\text{IgG CSF} - \frac{\text{IgG serum}}{369} - \left(\text{Alb CSF} - \frac{\text{Alb cerum}}{230} \right) \times \frac{\text{IgG serum (0.43)}}{\text{Alb serum}} \right] \times 5$$
Normal serum:CSF albumin

- If BBB is damaged, permeability to albumin should be proportional to that of IgG
- Corrects for IgG in CSF due to serum leakage
- Estimates amount of IgG being produced in CSF per day
 - Uses constants representing

$$\left[IgG \ CSF \ -\frac{IgG \ serum}{369} - \left(Alb \ CSF \ -\frac{Alb \ serum}{230} \right) \times \frac{IgG \ serum}{Alb \ serum} \right] \times 5$$

- If BBB is damaged, permeability to albumin should be proportional to that of IgG
- Corrects for IgG in CSF due to serum leakage
- Estimates amount of IgG being produced in CSF per day
 - Uses constants representing

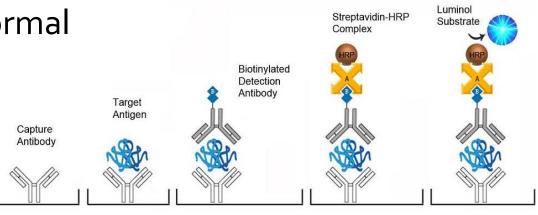

$$\left[\text{IgG CSF } -\frac{\text{IgG serum}}{369} - \left(\text{Alb CSF } -\frac{\text{Alb serum}}{230} \right) \times \frac{\text{IgG serum (0.43)}}{\text{Alb serum}} \times 5 \right]$$

Daily CSF

- > 8 mg/d indicates increased CSF lgG production
 - 90% of MS patients
 - 4% of normal individuals
- Sensitivity 85-90%
- Specificity 80%

CSF Cell Count

- White Blood Cells
 - normal < 5 cells/μL
 - MS 15 50 cells/μL
 - > 50 cells/ μL, consider another etiology



vet.uga.edu

- Differential: primarily lymphocytes
 - T-cells
 - Other cell types, consider another etiology

Myelin Basic Protein

- Myelin Basic Protein (MBP)
 - Presence in CSF can indicate active demyelination
 - Increases during acute exacerbations
- Chemiluminescent sandwich-type immunoassay
 - Relative light output units directly proportional to MBP concentrations
- >5.5 ng/mL is abnormal

CSF Kappa Free Light Chains

- Plasma B-cells secrete excess free light chains in CSF
 - Elevation may occur earlier than IgG
- Measured by nephelometry
- Calculated similarly to IgG index/synthesis rate
- Comparison with oligoclonal band detection
 - Similar sensitivity in MS: 90-95%
 - Improved sensitivity in CIS ("early MS"): 80% vs 70%
 - Less technically demanding and time consuming
 - Rater-independent

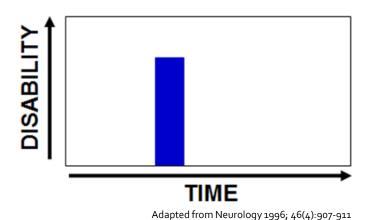
Case Presentation

- Physical Exam: central vision defect
- MRI: Enhancement of left optic nerve
 - Possible spinal cord lesion, unable to characterize definitively
- Oligoclonal band detection: Positive (3 bands)
- Increased IgG Index: 0.74
- Increased IgG synthesis rate: 8.7 mg/d
- CSF cell count: 23 cells/ μL (22 lymphs, 1 mono)
- Does she meet McDonald diagnostic criteria?

Case Presentation

- Physical Exam: central vision defect
- MRI: Enhancement of left optic nerve
 - Possible spinal cord lesion, unable to characterize definitively
- Oligoclonal band detection: Positive (3 bands)
- Increased IgG Index: 0.74
- Increased IgG synthesis rate: 8.7 mg/d
- CSF cell count: 23 cells/ μL (22 lymphs, 1 mono)
- Does she meet McDonald diagnostic criteria?
 - Yes! (≥ 2 attacks AND clinical evidence of ≥ 2 lesions)

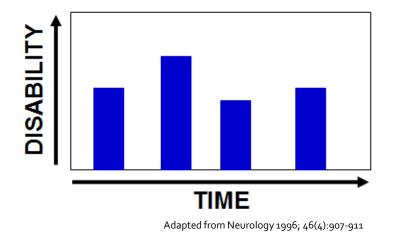
Learning Objectives


- Discuss the epidemiology, etiology, pathophysiology, and risk factors for Multiple Sclerosis (MS)
- Describe the clinical manifestations, differential diagnosis, and clinical and laboratory evaluation of MS
- Describe the clinical course, management, and monitoring of patients with MS

Clinical Course

- Four MS Types
 - Clinically Isolated Syndrome
 - Relapsing-Remitting MS
 - Secondary Progressive MS
 - Primary Progressive MS

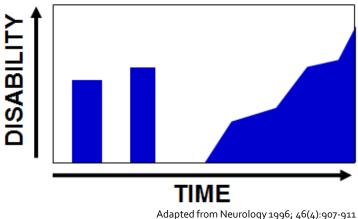
Clinical Course: Clinically Isolated Syndrome


- One attack of symptoms compatible with MS but does not yet fulfill diagnostic criteria
 - Lasts ≥ 24h with full or partial resolution
 - Not due to other cause
 - 20-60% risk of progression to MS

- Radiographically Isolated Syndrome (RIS)
 - Incidental MRI findings compatible with MS but without symptoms
 - Not due to other disease process
 - Estimated 30% risk of progression to MS (limited data)

Clinical Course: Relapsing-Remitting

- 80-90% of patients, initially
- Discrete attacks separated by periods of return to near-normal function

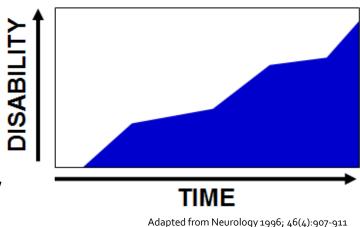


Most will enter a secondary progressive phase

 Complete resolution between attacks, even 15 years from onset, is referred to as benign MS

Clinical Course: Secondary Progressive

 60-70% of initial relapsing-remitting MS cases


 Progressive neurologic decline without definite periods of remission

Transition usually 10-20 years after disease onset

Distinction is usually made retrospectively

Clinical Course: Primary Progressive

- 10% of MS patients at onset
- Progressive neurologic decline from the start
- Occasional plateaus, minor improvement, and acute worsening of symptoms
- Later mean age of onset at 40
- More even sex distribution
- Worse prognosis
- A rapidly progressive course, with significant deficits in multiple neurologic systems, shortly after onset is referred to as malignant MS

Management: Acute Exacerbations

- Steroid therapy
 - Immune suppression
 - IV methylprednisolone
 - Oral prednisone
- Plasma exchange if not responsive to steroids
 - Removal of antibodies from blood
- Symptom management

Management: Relapsing-Remitting

- Disease modifying therapies (DMT)
 - Reduce relapse rate
 - Slow plaque accumulation
 - Immunosuppression, liver toxicity, birth defects
- Natalizumab (humanized monoclonal antibody)
 - Interferes with T-cell migration into CNS
- Glatiramer acetate (amino acid polymer resembling MBP)
 - Shifts T-cell population from proinflammatory to regulatory
 - Acts as a decoy, attracting autoimmune T-cells away from myelin
- Teriflunomide
 - Disrupts interaction between T-cells and antigen presenting cells

Management: Progressive

- Therapies are limited
- Primary progressive
 - Ocrelizumab (human monoclonal antibody)
 - Targets CD20, depleting B-cell population
 - Only DMT with good evidence of efficacy
- Secondary progressive
 - Siponimod (sphingosine 1-phosphate receptor modulator)
 - Interferes with lymphocyte migration into CNS
- Symptom management

Monitoring

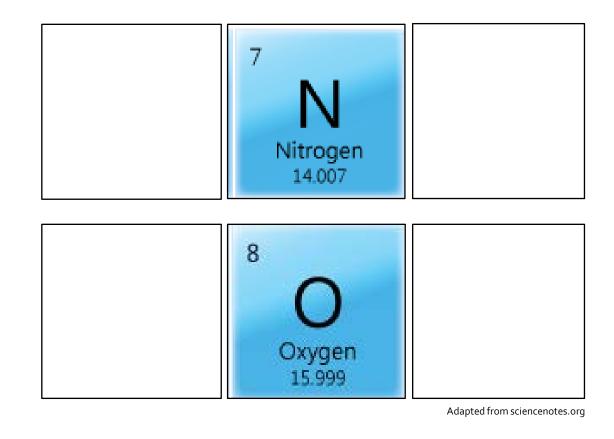
- Brain MRI every 12 months
- Assessment using Expanded Disability Status Scale (EDSS) every 3 months
 - Movement, sensation, vision, cognition, brainstem and bowel/bladder function
- Limited laboratory role in monitoring disease activity
 - Therapy
 - IFN-β neutralizing antibody
 - Natalizumab antibodies
 - Side effects
 - CBC
 - LFT

Case Presentation

- Placed on natalizumab therapy at diagnosis
- Initial symptoms resolved
- 2 additional episodes of numbness and tingling in both hands
- Mild permanent sensory loss in left hand, mild chronic fatigue
- Most recent MRI 2017: left optic nerve and spinal cord lesions
- EDSS score 2018: 2.0

Case Presentation

- Placed on natalizumab therapy at diagnosis
- Initial symptoms resolved
- 2 additional episodes of numbness and tingling in left hand
- Mild permanent sensory loss in hand, mild chronic fatigue
- Most recent MRI 2017: optic nerve and spinal cord lesions
- EDSS score 2018: 2.0



Summary

- MS is a chronic, immune-mediated, heterogeneous neurologic disorder with variable clinical and pathologic findings
 - Etiology and pathogenetic mechanism poorly understood
- Clinical diagnosis, supported by imaging and laboratory findings
 - Very few findings are specific to MS
- Therapy based on immunosuppression and immunomodulation

Thank You!

- For listening!
- Jonathan Genzen, MD
- Elizabeth Frank, PhD
- Anu Maharjan, PhD
- Carmen Gherasim, PhD
- Timothy Hanley, MD, PhD
- Mary Offe

References

- ARUP Consult
- Ascherio A, Munger KL, White R, et al. Vitamin D as an early predictor of multiple sclerosis activity and progression. JAMA Neurology 2014; 71:306.
- Ascherio A, Zhang SM, Hernán MA, et al. Hepatitis B vaccination and the risk of multiple sclerosis. N Engl J Med 2001;
 344:327.
- Bentz, JS. Laboratory Investigation of Multiple Sclerosis. Laboratory Medicine 1995;26(6):393–399.
- Cotran, Ramzi S., et al. *Robbins Pathologic Basis of Disease*. Saunders, 1999.
- Hernán MA, Alonso A, Hernández-Díaz S. Tetanus vaccination and risk of multiple sclerosis: a systematic review.
 Neurology 2006; 67:212.
- HuY, Tornes L, Lopez-Alberola R. Two cases of pediatric multiple sclerosis after human papillomavirus vaccination.
 Presented at: ACTRIMS Forum 2018; February 1-3, 2018; San Diego, CA. Abstract #Po88
- Koch-Henriksen N, Sørensen PS. The changing demographic pattern of multiple sclerosis epidemiology. Lancet Neurol 2010; 9:520.
- Lampasona V, Franciotta D, Furlan R, et al. Similar low frequency of anti-MOG IgG and IgM in MS patients and healthy subjects. Neurology 2004; 62:2092.
- Lublin FD, Reingold SC. Defining the clinical course of multiple sclerosis: Results of an international survey. Neurology. 1996;46(4):907-911.
- Mowry EM, Waubant E, McCulloch CE, et al. Vitamin D status predicts new brain magnetic resonance imaging activity in multiple sclerosis. Annals of Neurology 2012; 72:234.
- Munger KL, Zhang SM, O'Reilly E, et al. Vitamin D intake and incidence of multiple sclerosis. Neurology 2004; 62:60.
- Olek, MJ. Clinical course and classification of multiple sclerosis. *UpToDate.com* 2016.
- Olek, MJ. Diagnosis of multiple sclerosis in adults. *UpToDαte.com* 2017.
- Olek, MJ. Treatment of progressive multiple sclerosis in adults. UpToDate.com 2018.
- Olek MJ, Mowry E. Pathogenesis and epidemiology of multiple sclerosis. UpToDate.com 2017.
- Olek MJ, Narayan RN, Frohman EM, Frohman TC. Clinical features of multiple sclerosis in adults. UpΤοDαte.com 2018.

References

- Pelayo R, Tintoré M, Montalban X, et al. Antimyelin antibodies with no progression to multiple sclerosis. N Engl J Med 2007; 356:426.
- Polman CH, Reingold SC, Banwell B, et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Annals of Neurology 2011; 69:292.
- Presslauer S, Milosavljevic D, Huebl W, et al. Validation of kappa free light chains as a diagnostic biomarker in multiple sclerosis and clinically isolated syndrome: A multicenter study. Multiple Sclerosis Journal 2015;22(4):502-510.
- Riise T, Nortvedt MW, Ascherio A. Smoking is a risk factor for multiple sclerosis. Neurology 2003; 61:1122.
- Salzer J, Hallmans G, Nyström M, et al. Vitamin D as a protective factor in multiple sclerosis. Neurology 2012; 79:2140.
- Ziadie, Mandolin, and Jr. Frank H. Wians. "A Guide to the Interpretation of CSF Indices." Laboratory Medicine 2005;36(9): 558–562.