Carrier detection for Tay-Sachs disease: a model for genetic disease prevention

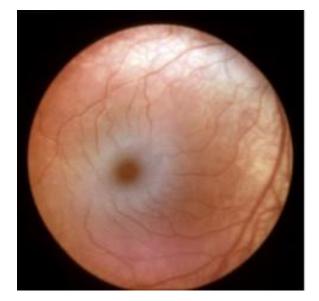
Irene De Biase, MD PhD

Assistant Professor of Pathology, University of Utah Assistant Medical Director, Biochemical Genetics and Supplemental Newborn Screening, ARUP Laboratories

Conflict of Interest

None to declare

Learning objectives


- Review the clinical characteristics and the biochemical features of Tay-Sachs Disease
- Describe the population-based screening for Tay-Sachs disease and its impact on disease incidence
- Explore the unique challenges in carrier testing for Tay-Sachs disease

Cherry red spot

Warren Tay

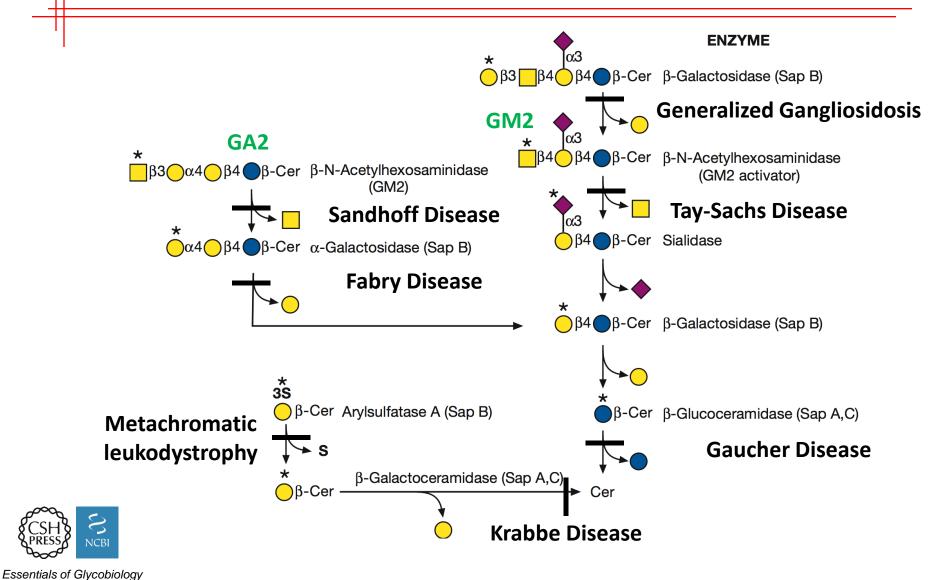
British ophthalmologist

In 1881, he described the **cherry red spot** on the retina of a one-year old child with **mental and physical retardation**

NOVEL collection University of Utah

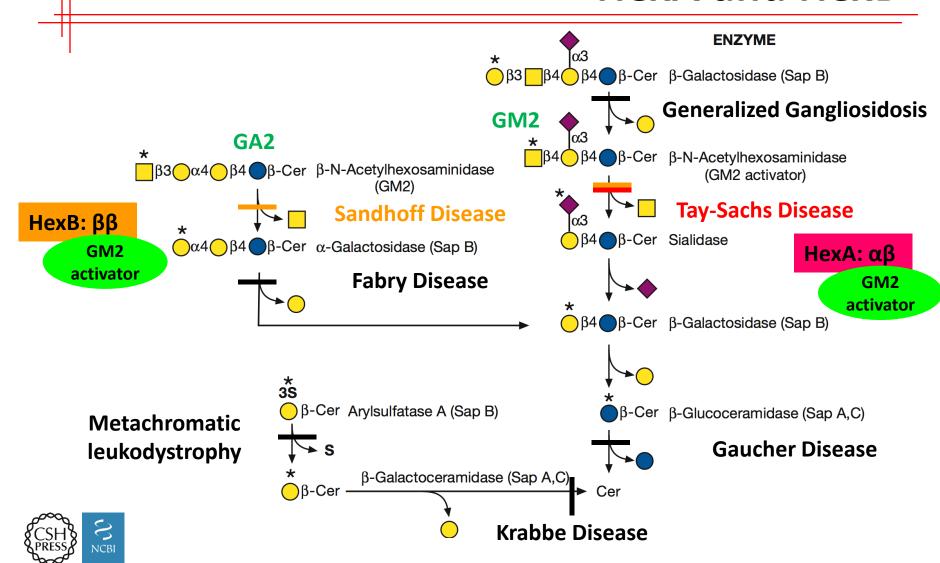
Bernard Sachs

Jewish-American neurologist

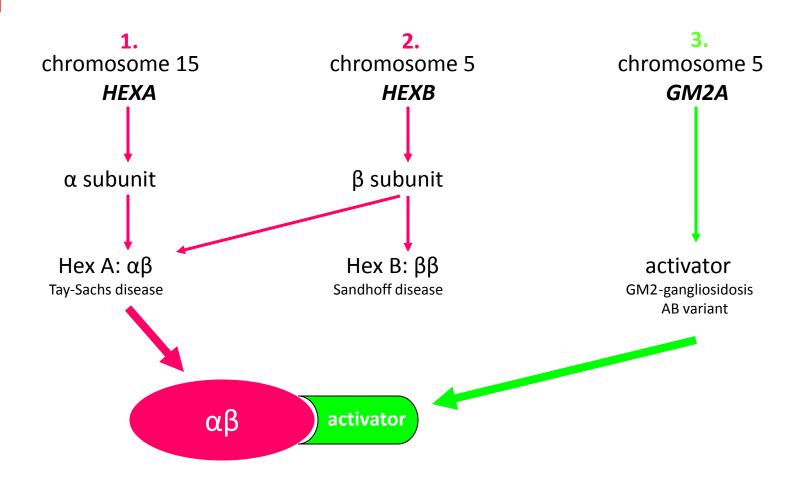

In 1896, observed the **extreme swelling of neurons** in autopsy tissue of affected children

Also noticed the disease seemed to be of Jewish origin

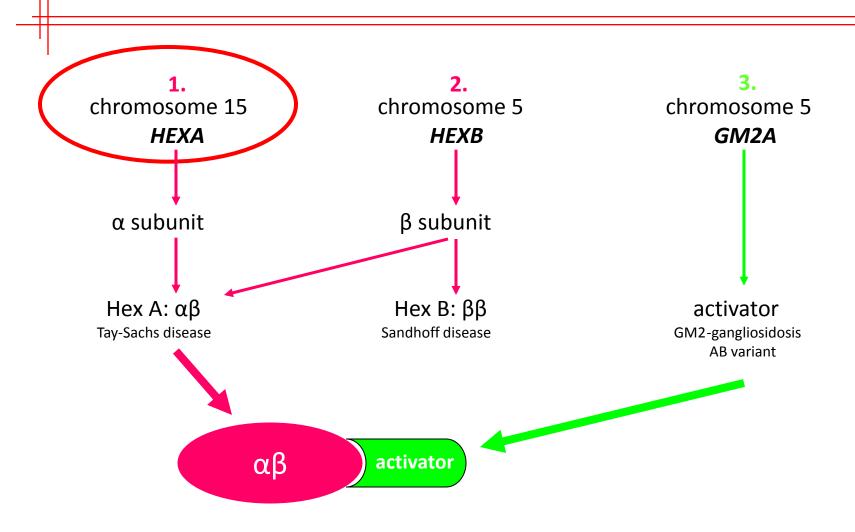
TSD is a lysosomal storage disease


- The underlying biochemical defect is the profound deficiency of the lysosomal hydrolase β-hexosaminidase A
- HexA is necessary for the break-down of the ganglioside GM2, a component of the plasma membrane

Degradation of glycosphingolipids


Second Edition

β-hexosaminidase isoforms: HexA and HexB



Essentials of Glycobiology Second Edition

Three gene system required for HexA activity

Three gene system required for HexA activity

TSD mode of inheritance: autosomal recessive

TSD clinical phenotype varies widely

Infantile TSD

- most prevalent
- usual onset at 6 months

Juvenile TSD

- extremely rare
- onset between ages of 2 and 10 years

Late Onset TSD

- rare
- signs and symptoms present in late 20's and early 30's

Infantile Tay-Sachs Disease

✓ Relentless deterioration of mental and physical abilities beginning around six months of age, and resulting in death by age 5

3 -6 mo

- Excessive Startling
- Twitchy eye movement
- Reverse maturation (i.e. failure to walk)

6 - 10 mo

- Gradual loss of vision
- Gradual deafness
- Loss of motor skills
- Macrocephaly
- Hypotonia

After 10 mo

- Complete blindness
- Strong seizures
- Dementia
- Unresponsive, vegetative state
- Death due to bronchopneumonia between ages 2-5

Late-onset Tay-Sachs Disease (LOTS)

- ✓ Juvenile
- Ataxia (beginning at 2-10 years of age)
- Cognitive decline
- Spasticity and seizures
- Loss of vision
- Early death
- ✓ Chronic adult-onset
- Psychosis, depression, bipolar symptoms
- Progressive dystonia, choreoathetosis, ataxia
- Cognitive dysfunction and dementia

Diagnostic confirmation for a symptomatic patient

- β-hexosaminidase A (HexA) enzymatic activity in serum

 or white blood cells using synthetic substrates
- o infantile TSD: 0% 5% residual activity
- o juvenile or chronic adult-onset TSD: < 15% residual activity

✓ Molecular testing

- Confirm diagnosis: mutations in the HEXA gene
- Exclude pseudodeficiency alleles
- Identify specific disease-causing mutations in at-risk family members and for prenatal diagnosis

Tay-Sachs Disease Management

Tragically, there is no cure

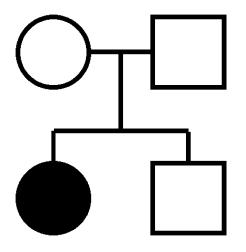
Affected children can only be made as comfortable as possible

- Adequate nutrition and hydration (feeding tubes)
- Manage infectious disease
- Respiratory care
- Anti-convulsion medications to control seizures
- Antipsychotic or antidepressant therapy (adult-onset TSD)

Novel Treatments?

- Hematopoietic stem-cell transplantation
- No benefit for neurodevelopmental symptoms, and potential harm for overall survival (Bley et al. 2011)
- Substrate reduction therapy
- No measurable benefits in late-onset TSD with Miglustat [inhibitor of glycosphingolipids synthesis] (Shapiro et al. 2009)
- Recombinant beta-hexosaminidase A
 Work in progress. Difficult to deliver across the blood-brain barrier
- Pharmacological chaperones

HexA selective inhibitors, work in progress (Rountree 2009)


Possible benefits in late-onset TSD using Pyrimethamine

[antimalarial drug that enhances HexA activity] (Osher et al. 2011)

Most common in Ashkenazi Jews

- Most common in Eastern Europeans of Jewish descent (Ashkenazi Jews), French Canadians and members of the Cajun community in Louisiana
 - > 1:30 carrier frequency
 - 1:3,600 disease frequency (Infantile Type)
 - > 1:67,000 disease frequency (Adult type)
- General population
 - > 1:300 carrier frequency
 - 1:320,000 disease frequency (Infantile Type)

The importance of being tested

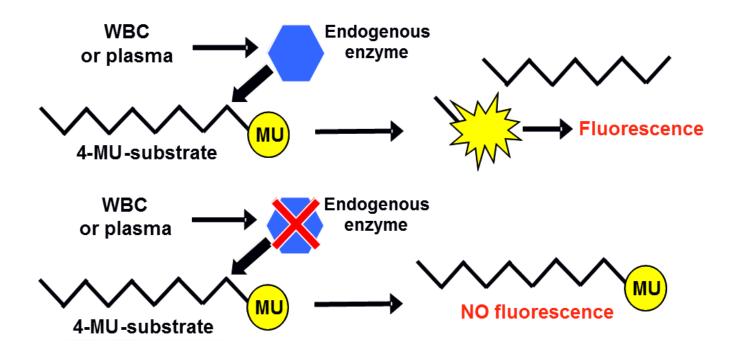
Carrier testing

- Screening programs for at-risk populations
- Individuals with a positive family history

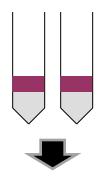
ACOG/ACMG guidelines: TSD carrier screening should be offered to individuals and couples at high-risk, including those of Ashkenazi Jewish, French-Canadian, or Cajun descent and those with a family history consistent with TSD, as part of routine obstetric care

TSD carrier screening started in 1971

The screening program for Tay-Sachs Disease started at Johns Hopkins (Dr. Michael Kaback) in 1971

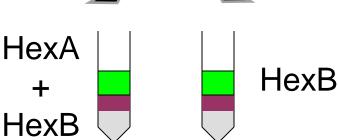

Originally done by enzyme assay

Rationale


- > TSD occurs predominantly in a defined population (Ashkenazi Jews)
- Availability of a simple, inexpensive carrier detection test (serum and/or WBC HexA activity)

β-hexosaminidase A (HexA) enzymatic assay

- Uses enzyme-specific artificial 4-MU-conjugated substrate
- 4-MU released is measured using a fluorometer


Measurement of HexA activity

- The fluorogenic substrate measures both the HexA and Hex B activities
 - HexA + Hex B = total activity

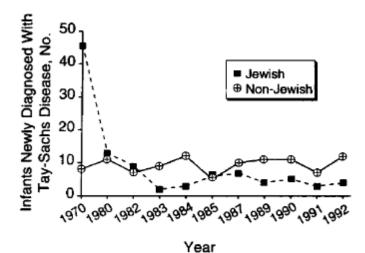
Hexosaminidase A is heat labile

 Heat-inactivation allows to quantify HexA activity as a ratio of total activity

Carrier status is established by HexA%

Carrier of Tay-Sachs disease	↓ %HexA	↓/N Total
Patients with Tay-Sachs disease	↓↓ %HexA	↓ ↓ Total
Carrier of Sandhoff disease	↑ %HexA	↓ Total
Patients with Sandhoff disease	↑↑ %HexA	↓ ↓ Total
Pregnant Women	↓/N %HexA	↑↑↑ Total

Hex A: $\alpha\beta$ Tay-Sachs disease


Hex B: $\beta\beta$

Prototype for ethnic-based carrier screening

Before population carrier screening the incidence of Tay-Sachs disease was 1:3,600 for Ashkenazi Jewish births

Table	1Tay	Sachs	Disease	Heterozygote
Screenin	ng, 1971	Through	1992	

	No.		At-Risk
Country	Tested	Carriers	Couples
United States	712 818	27 150	657
Israel	159 544	4229	263
Canada	55 922	2922	57
South Africa	11 638	1286	36
Europe	10 927	725	21
Brazil, Mexico	1682	96	20
Australia	473	10	2
Total	953 004	36 418	1056

After implementation of screening, the incidence was reduced by greater than 90%

Kaback M & the International TSD Data Collection Network (JAMA. 1993;270:2307-2315)

"Tay-Sachs Disease represents a prototypic effort in the coordination of adult public education, voluntary carrier testing, and comprehensive genetic counseling directed to the prospective prevention of an unbeatable and uniformly fatal childhood disease"

Kaback M & the International TSD Data Collection Network (JAMA. 1993;270:2307-2315)

TSD Biochemical Genetics Testing at ARUP

- Hexosaminidase A Percent and Total Hexosaminidase in Plasma or Serum (2008121)
 - Confirm diagnosis of Tay-Sachs disease
 - Carrier screening in males or non-pregnant females
- Hexosaminidase A Percent and Total Hexosaminidase in Leukocytes (2008125)
 - Carrier status in women who are pregnant or taking oral contraceptives
 - Individuals with inconclusive serum results
- Hexosaminidase A Percent and Total Hexosaminidase in Plasma with Reflex to Leukocytes (2008129)

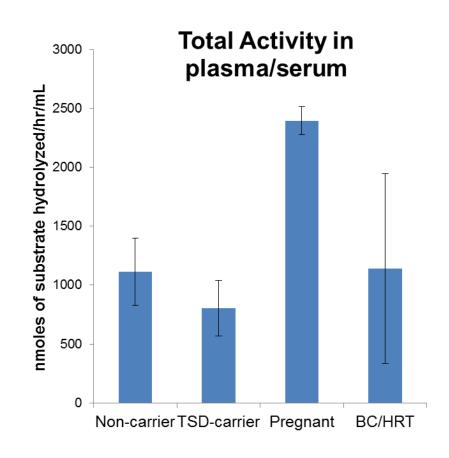
Is it really that simple?

✓ Limitations of the HexA enzymatic test

False positives

- Alternative hexosaminidase isoforms
- Pseudodeficiency alleles

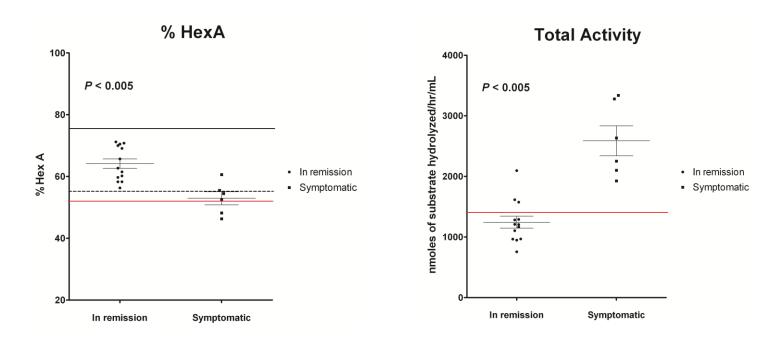
False negatives


B1 variant

Inconclusive results

Increases in plasma/serum total hexosaminidase cause false positive

HexA enzymatic test in plasma/serum (May 2013 hotline – August 2014)


Non-carrier	66% (N = 104)
TSD Carrier	7% (N = 11)
Inconclusive	11% (N = 18)
Carrier with个个 total activity	15% (N = 24)
Total	N = 158 (86M, 72F)

Alternative heat-resistant forms of Hexosaminidase

Several conditions increase total hexosaminidase activity in serum/plasma, but NOT in leukocytes

%HexA and total activity in a cohort of patients with symptomatic liver disease or in remission

Pseudodeficiency alleles

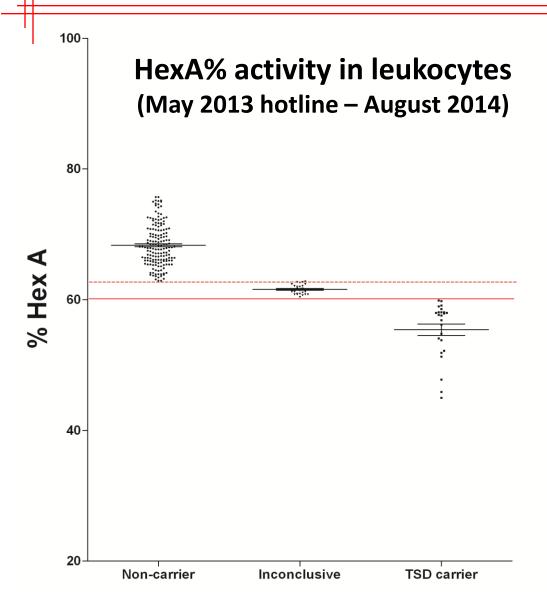
- General population carrier frequency: 1:300
- General population carrier frequency by enzyme*: 1:170

✓ p.Arg247Trp and p.Arg249Trp

- not associated with disease
- reduce HexA enzymatic activity toward <u>synthetic substrates</u> when activity is determined [the naturally occurring GM2 ganglioside is not stable and not available]
- Molecular genetic testing can be used to clarify
 About 35% of non-Jewish individuals and 2% of Jewish individuals (identified as carriers by HEX A enzyme-based testing)
 are carriers of a pseudodeficiency allele

B1 variant

Table 4.—Mutations Associated With Later-Onset Forms of Hexosaminidase-A-Deficient GM₂ Gangliosidoses*


Form of Disease	Mutation	Ethnic Group
"B ₁ Variant" (late infantile or juvenile onset)	Arg178 → His	Portuguese, European
	Arg178 → Cys	Czech
	5 other mutations reported	Diverse other
Juvenile GM₂	Arg499 → His	Scotch, Irish
	Arg504 → His	Assyrian, Armenian
	Gly250 → Asp	Lebanese
Chronic or adult GM ₂	Gly269 → Ser	Ashkenazi Jewish, diverse other
	Lys197 → Thr	Dutch

^{*}Identified in both homozygous and compound heterozygous states. Arg indicates arginine; His, histidine; Cys, cystine; Gly, glycine; Asp, aspartic acid; Ser, serine; Lys, lysine; and Thr, threonine.

- Associated with juvenile and chronic hexosaminidase A deficiency
- Able to cleave the artificial substrate, but NOT GM2

Kaback M & the International TSD Data Collection Network (JAMA. 1993;270:2307-2315)

Inconclusive results using the enzymatic test

 Around 10% of results are outside normal range but higher than observed in Tay-Sachs disease

 Carrier status should be excluded

Targeted mutation analysis greatly improves detection in at-risk populations

Mutation	AJ	Not- AJ
1278insTATC	~82%	~8-30%
IVS12+1	~10-15%	0
G269S	~ 2%	~ 5%
c.1073+1G>A	0	~ 15%
Pseudo-alleles	2%	4-32%
7.6-kb del	French Canadian	

~ 99% Ashkenazi Jews Mutations

"Next generation" TSD carrier screening Challenges

- ✓ Targeted mutation analysis identified 92 99% of carriers in a homogeneous AJ population
 - AJ population tested by our labs is probably NOT homogeneous

Jan 2011 - Dec 2013

TILMA / IIIdidilolis i dilci	HEXA	7	mutations	Panel
------------------------------	------	---	-----------	--------------

TIETAL TIME CONTROL OF THE CONTROL O				
N	Non-carrier	TSD Carrier	Pseudodeficiency	
742	98%	2%	< 1%	
(67M, 675F)	(N = 724)	(N = 14)	(N = 4)	

Tay-Sachs Disease (HEXA) 7 Mutations (0051428)

Towards an ethnicity-independent TSD carrier screening

Molecular Genetics & Genomic Medicine

Open Access

METHOD

Next-generation DNA sequencing of *HEXA*: a step in the right direction for carrier screening

Jodi D. Hoffman¹, Valerie Greger², Erin T. Strovel³, Miriam G. Blitzer³, Mark A. Umbarger², Caleb Kennedy², Brian Bishop², Patrick Saunders², Gregory J. Porreca², Jaclyn Schienda⁴, Jocelyn Davie², Stephanie Hallam² & Charles Towne²

- Full gene analysis limits false-positive and false-negative results compared to traditional enzyme and genotyping methodologies
- CAVEAT: variant of unknown significance still require functional studies

¹Division of Genetics, Department of Pediatrics, Floating Hospital for Children, Tufts Medical Center, Boston, Massachusetts

²Good Start Genetics Inc., Cambridge, Massachusetts

³Division of Genetics, Department of Pediatrics, University of MD School of Medicine, Baltimore, Maryland

⁴Dana Farber Cancer Institute, Boston, Massachusetts

ARUP performs full gene sequencing

 Tay-Sachs Disease (HEXA) Sequencing and 7.6kb Deletion (2009298)

Identify causative *HEXA* gene mutation(s) in individual with abnormal level of HEX A enzyme

Conclusions

- Tay-Sachs disease population-based carrier screening is a good model for genetic disease prevention
- Best sensitivity is achieved combining enzyme and molecular testing
- Access to inexpensive sequencing methodologies is necessary for pan-ethnic carrier screening

Unresolved issues

- ✓ Current recommendations is to offer carrier screening to members of at-risk populations
 - TSD has been reported in children of all ethnic, racial, and religious groups
- ✓ Preventing the births of affected children is a less-than-ideal method of disease control
 - We need a cure!!

Irene De Biase, MD, PhD irene.de-biase@aruplab.com