Help! What do I do with those granulomas in the lung?

2019 Anatomic Pathology Update
University of Utah
Park City, Utah

Henry D. Tazelaar, M.D.
Chair and Geraldine Zeiler Colby Professor of Cytopathology
Department of Laboratory Medicine and Pathology
Alix College of Medicine and Science
Mayo Clinic Arizona

Objectives/Outline
At the end of the lecture, participants should be able to...

• Provide a framework for approaching cases with granulomatous inflammation
 ▪ Large granulomas
 ▪ Small granulomas
• List the features of granulomas associated with infection
• List the features of granulomas which favor a vasculitic process
• Discriminate between foreign material and endogenous inclusions in the lung

Radiologic Distribution

Focal/Multi-Focal

Diffuse

Hypersensitivity pneumonitis
Hot tub lung
Infection
Sarcoid
Lymphoma
Aspiration

MAC/MLS
IBD

No
Infection
Aspiration
GPA
Rheumatoid
Nec-Nodular Sarcoid
Lymphoma

Yes

Bronchiectasis?
Granulomas in Biopsy

Necrotizing

Non-necrotizing

Small Gross nodule(s)

Infection Aspiration GPA Lymphoma Rheumatoid Nec Sarcoid

Small Gross nodule(s)

Infection HP Hot tub LIP

Nodular sarcoid

History

• A 55 yr old man was found to have 2 lung nodules

• History: intercapillary glomerulosclerosis

• Underwent surgical lung biopsy
Diagnosis?
Diagnosis?
Necrotizing Granulomatous Inflammation most c/w an Infectious Etiology

Additional Studies
- Serologies including pANCA and cANCA were negative
- Stains for acid fast neg
- Stains for fungi...

Diagnosis
Histoplasmosis characterized by Necrotizing Granulomatous Inflammation and Vasculitis
Key Histologic Features

- Granulomas
 - Necrotizing
 - Round borders
 - Geographic borders
 - Non-necrotizing
 - Surrounded by thin rim of infl’n
 - Some bronchiolocentric
- Vasculitis
- Presence of calcified bodies

Key Histologic Features

- Granulomas
 - Necrotizing
 - Round borders
 - Geographic borders
 - Non-necrotizing
 - Surrounded by thin rim of infl’n
 - Some bronchiolocentric
- Vasculitis
- Presence of calcified inclusions

Solitary Granulomas
Culture Results for *Histoplasma* Cases

<table>
<thead>
<tr>
<th>Source</th>
<th>N, Pos/total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sputum</td>
<td>0/22</td>
</tr>
<tr>
<td>Bronchial Wash</td>
<td>0/9</td>
</tr>
<tr>
<td>Bronchial Brush</td>
<td>0/3</td>
</tr>
<tr>
<td>Needle Aspiration</td>
<td>0/2</td>
</tr>
<tr>
<td>Lung Biopsy</td>
<td>0/19</td>
</tr>
</tbody>
</table>
% Yield of Cultures (C) vs. Histology (H)

88 Cases
10 Centers
(7 Countries)

- Fungi
- Mycobacteria

Mycobacteria more often culture positive
Fungi, more often histology positive

Solitary Granulomas
Importance of Special Stains

- Among all patients with histoplasmosis, 54 blocks were stained with GMS
- Only 74% contained organisms
- Organisms “numerous” 58%
 - Usually located centrally

Histol’ic features of Histoplasmosis forming a Solitary Nodule, N=24

<table>
<thead>
<tr>
<th>Feature</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Round borders</td>
<td>79</td>
</tr>
<tr>
<td>Geog’ic borders</td>
<td>21</td>
</tr>
</tbody>
</table>
Histologic features of Histoplasmosis forming a Solitary Nodule, N=24

<table>
<thead>
<tr>
<th>Feature</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-nec gran</td>
<td>13</td>
</tr>
<tr>
<td>Vasculitis</td>
<td>54</td>
</tr>
</tbody>
</table>
Histo –Well Formed Non-Nec Gran

Acute Histoplasmosis

Endogenously-Derived Crystals
Ca carbonate Ca oxalate

Visscher D et al Mod Pathol 1988;1:415
Differential Diagnosis

- Other necrotizing granulomatous infections
- Wegener granulomatosis / Granulomatosis with polyangiitis
- Catheter sheath emboli

Mycobacterium tuberculosis

<table>
<thead>
<tr>
<th>Histologic Feature</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vasculitis</td>
<td>87</td>
</tr>
<tr>
<td>Geographic necrosis</td>
<td>30</td>
</tr>
<tr>
<td>Non-caseating granulomas</td>
<td>30</td>
</tr>
</tbody>
</table>

TB with vasculitis

Pneumocystis jivorecii

Granulomatous PCP
20 Cases

<table>
<thead>
<tr>
<th>Disease</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIV</td>
<td>35</td>
</tr>
<tr>
<td>Heme malig.</td>
<td>30</td>
</tr>
<tr>
<td>Solid tumor</td>
<td>20</td>
</tr>
<tr>
<td>Unknown</td>
<td>15</td>
</tr>
</tbody>
</table>

Granulomatous PCP
20 Cases

<table>
<thead>
<tr>
<th>Feature</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Necrotizing gran</td>
<td>80</td>
</tr>
<tr>
<td>Non necrotizing gran</td>
<td>20</td>
</tr>
<tr>
<td>Foamy exudate</td>
<td>25</td>
</tr>
<tr>
<td>Cystic spaces</td>
<td>5</td>
</tr>
<tr>
<td>Calcification</td>
<td>5</td>
</tr>
</tbody>
</table>

![Histological images of granulomatous PCP](image)
Infectious Granulomas vs Vasculitis

- **Infection favored**
 - Non-necrotizing granulomas
 - Sarcoid-like granulomas
 - Thin rim of inflammation
 - Giant cells that contain inclusions
- **Diagnosis of infection may take**
 - Repeating special stains
 - Doing stains on more blocks

Vasculitis and Geographic Necrosis not helpful

Infectious Granulomas vs Vasculitis

- **Vasculitis favored**
 - Only necrotizing granulomas
 - All granulomas have geographic necrosis
 - Granulomas/necrosis set in inflammatory background
 - Microabscess-like foci
 - Bizarre hyperchromatic nuclei in GC’s
 - NO inclusions in GC’s
 - Foci of alveolar hemorrhage or capillaritis
Wegener Granulomatosis /Granulomatosis with Polyangiitis

- May present as solitary pul nodule
- cANCA negative in ~ 30% of patients with limited disease

Pulmonary Sarcoidosis

Histology

- Granulomatous inflammation
 - Lymphangitic
 - Well-formed
 - Often hyalinized
- Rare
 - Isolated giant cells
 - Interstitial and organizing pneumonia
Granulomas well-formed and with hyalinized fibrosis

Sarcoid: Features

• Non-necrotizing granulomatous inflammation without
 – Chronic interstitial pneumonia
 – Organizing pneumonia
• Inclusions usually endogenous
Pulmonary Sarcoid
Differential Diagnosis

- Hypersensitivity pneumonitis
 - Hot tub lung
- Infection
 - MAC: bronchiectasis
- Berylliosis

Hypersensitivity Pneumonitis
Diagnosis?

- Exposure history? only in 50%
- Antibodies testing?
 - Antibodies not available for many antigens
 - Many “exposed” but not ill patients antibodies +
 - Currently NOT recommended in work up

Hypersensitivity Pneumonitis
Diagnosis?

- A difficult clinical challenge
- Compatible clinical, radiographic or physiologic findings
- BAL with lymphocytosis (low CD4:8)
- Histopathology
Hypersensitivity Pneumonitis
Clinical Presentations*
• Acute: dyspnea, cough, myalgias, chills etc.
 – 2-9 hours after exposure
 – Resolves without specific therapy
• Subacute/Chronic: dyspnea, cough, weight loss, anorexia
 *depends on intensity and duration of exposure

Extrinsic Allergic Alveolitis

Hypersensitivity Pneumonitis
Histologic Features
• Non-nec granulomatous inflammation and giant cells
 – Airway-centered and random
 – Interstitial and airspace
• Interstitial pneumonia
• Chronic bronchiolitis

Castonguay M et al Human Pathol 2015;46:807-13
Hypersensitivity Pneumonitis

Variable Histologic Features

- Prominent centrilobular airspace foam cells
- Organizing pneumonia
- Interstitial fibrosis
- Honeycomb change/ UIP-like features

Eosinophils uncommon
Only 20%
Major Histologic Patterns in HP
n=110 (%)

- 19% of cases had no granulomas or giant cells
- Granulomas and giant often absent in cases with fibrosis

<table>
<thead>
<tr>
<th>Cell. NSIP</th>
<th>F NSIP</th>
<th>UIP</th>
<th>Peribronchiolar inflamm with gran</th>
<th>Bronchiolocentric fibrosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>20</td>
<td>6</td>
<td>20</td>
<td>9</td>
</tr>
</tbody>
</table>

Chronic hypersensitivity pneumonitis in patients diagnosed with idiopathic pulmonary fibrosis

- 20/46 pts with IPF according to 2011 ATS-ERS guidelines were subsequently diagnosed with chronic HP
- Bronchial challenge, lung biopsy and serum precipitins
- Most attributed to occult avian antigen exposure from... down bedding

Clues to the Diagnosis of HP

<table>
<thead>
<tr>
<th>Feature</th>
<th>UIP</th>
<th>NSIP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mosaicism/air trapping</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Granulomas and giant cells</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Bronchiolocentric inflammation</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Peribronchiolar metaplasia</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Bridging fibrosis</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Chung A et al Arch Pathol Lab Med 2018;142:109-119

Chronic HP with UIP pattern

Prominent peribronchiolar metaplasia
CHP with UIP vs IPF

Does the diagnosis matter?

- Differences in survival - IPF still worse in most studies
- Differences in treatment - possible benefit of antigen avoidance
- Differences post lung transplant - CHP may do better than IPF patients

Chronic Hypersensitivity Pneumonitis

- Increasingly recognized as a cause for non-fibrotic and fibrotic diffuse lung disease
- Still no gold standard for diagnosis
- Must always be in the differential diagnosis for UIP and NSIP patterns
- Subtle clues

“Hot Tub” Lung

- Granulomatous lung disease due to exposure to water contaminated with atypical mycobacteria (MAC)
- Flu-like illness after exposure
- CT: Interstitial and nodular miliary infiltrates
- Other water sources: Showers, faucets, saunas
MAC: Evaluation with CT

- N=62
- 56% intact immune system
- Nodular infiltrates
- Bronchiectasis

Hartman TE et al. Radiology, 1993; 187:3-6

Atypical Mycobacterial Infections with Bronchiectasis/Airway Disease

- Nec and non-nec. granulomas
 + Airway disease
 +/- Interstitial pneumonia

MAC-Airway Disease
Lady Windermere, my dear
You haven’t been coughing, I fear.
After careful inspection
You have an infection
That will be very difficult to clear

David Berkely, M.D.
South Bay Pathology Society
May 6, 2000

CF Transmembrane Regulator (CFTR) Mutations in Adults with B’ectasis or Non-Tuberculous Mycobacteria (NTM)

- Prospective analysis, n=50, 42 F
 - ages 28-82 yrs, mean 61 yrs
 - B’ectasis + NTM 60%
 - B’ectasis 34
 - NTM 6

Ziedalski et al Chest 2006;130: 995

CF Transmembrane Regulator (CFTR) Mutations in Adults with B’ectasis or Non-Tuberculous Mycobacteria (NTM)

- Prospective analysis, n=50, 42 F
 - ages 28-82 yrs, mean 61 yrs
 - De novo CF 20
 - CFTR mutations 50
 - B’ectasis 34
 - NTM 6

Ziedalski et al Chest 2006;130: 995
Pulmonary Nontuberculous (NTM) Mycobacterial Disease, n=63

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Women</td>
<td>95</td>
</tr>
<tr>
<td>White</td>
<td>91</td>
</tr>
<tr>
<td>Scoliosis</td>
<td>51</td>
</tr>
<tr>
<td>Pectus excavatum and Mitral Prolapse</td>
<td>10</td>
</tr>
<tr>
<td>Mutation in CFTR gene</td>
<td>36</td>
</tr>
<tr>
<td>Taller and thinner than those with dissemination NTM dis</td>
<td>P < 0.002</td>
</tr>
</tbody>
</table>

Genetic Variation in NTM Infection

- Have more low frequency protein-affecting variants of immune, CFTR, ciliary and connective tissue-associated genes than family members or controls
- NTM infection is multi-genic predisposition in combination w/ exposure

What do I do with those pesky little granulomas?

Granulomatous Infections

- Vasculitis a common feature
- Differentiate between inclusions and true foreign material
- MAC becoming an increasingly important pathogen with complex pathophysiology and settings

Thank you!