Urine toxicology testing to support pain management and treatment for substance use disorder

Yifei Yang, PhD, DABCC
Medical Director, Toxicology, ARUP Laboratories
Assistant Professor, University of Utah
Learning Objectives and Presentation Outline

• Describe the general analytical workflow of urine drug testing
• Understand the testing approaches for medication compliance in pain management and treatment for substance use disorder (SUD) settings
• Recognize the utilities and limitations of qualitative and quantitative test results
• Discuss case-based unexpected urine drug testing results and considerations for results interpretation
Urine toxicology testing to support controlled substance prescription and monitoring

• Pain management and SUD treatment
 • Long-term prescription of controlled substances
 • Various opiates: hydrocodone, oxycodone, etc. at various doses
 • Buprenorphine, with naloxone (Suboxone)
 • Co-medication with benzodiazepines, heroin, and other opiates can increase risk for over-dose

• Urine toxicology testing is recommended:
 • Baseline testing prior to prescription
 • Annual monitoring (minimal), interval up to clinician discretion
 • Detect undisclosed medication use
 • Confirm expected medication use

Urine toxicology testing is used to confirm the presence of prescribed medications

- Drug presence prevalence:
 - High positivity rate
 - Patients are mostly taking medications

- Appropriate positive cutoffs are needed for effective detection
 - Sensitivity requirement is high
 - Metabolites of parent drugs are often used to confirm compliance

- Assays should be able to differentiate and identify specific medication (specificity):
 - Hydrocodone (Norco) vs. oxycodone (Oxycotin)
 - Amphetamine vs. Methamphetamine
Urine toxicology test is used to detect non-disclosed substance use

• Critical to examine undisclosed exposure to other co-medications
 • Co-medication can increase overdose risk
 • Benzodiazepines and opiates
 • Multiple classes of opiates drugs
 • Alcohol use and opiates medication
 • Appropriate positive cutoffs are required for efficient detection and to minimize false positive

• Use of certain illicit substances use predict treatment failure for SUD
 • Heroin, cocaine, methamphetamine

Blum K et al. Subst Use Misuse, 2018
Traditional urine drug of abuse testing: Screening assay reflexed to confirmation testing

- Immunoassays screens to detect different classes of drugs
 - Urine Opiates, Benzodiazepines, etc.
 - Assays normally adopt a high cutoff to optimize specificity
 - Immunoassays are traditionally designed for low prevalence, low positivity setting (work place drug testing)

- Confirmation assay is performed following a specific class produces a positive results
 - Urine opiates immunoassay screen: positive (detected)
 - Urine opiates confirmation assay is performed accordingly
 - Confirmation assay detects urine morphine at 4345 ng/mL
Common questions based on traditional reflex testing mechanism

- Low sensitivity (false negative)
 - Common question: My patient is taking lorazepam, why the urine benzodiazepine immunoassay is negative?

- Poor specificity (false positive)
 - Common question: My patient has a positive result for urine amphetamine/methamphetamine immunoassay, but he/she denies use. Is this a false positive?
Common questions based on traditional reflex testing mechanism

• Low sensitivity (false negative)
 • Common question: My patient is taking lorazepam, why the urine benzo immunoassay is negative?
 • Immunoassay has different sensitivities to drugs belonging to the same class

• Poor specificity (false positive)
 • Common question: My patient has a positive result for urine amphetamine/methamphetamine immunoassay, but he/she denies use. Is this a false positive?
 • Multiple drugs/metabolites have shown to cause false positive for urine amphetamine immunoassays
 • Ranitidine based on case report

Moeller, K et al Mayo Clin Proc. 2017

Table 7 — Concentrations (ng/mL) of Benzodiazepine Compounds That Produce a Result Approximately Equivalent to the 200 ng/mL and 300 ng/mL Lorazepam Cutoffs

<table>
<thead>
<tr>
<th>Compound</th>
<th>Concentration (ng/mL) at 200 ng/mL Cutoff</th>
<th>Concentration (ng/mL) at 300 ng/mL Cutoff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alprazolam</td>
<td>65</td>
<td>79</td>
</tr>
<tr>
<td>7-Aminobenzodiazepine</td>
<td>5300</td>
<td>8000</td>
</tr>
<tr>
<td>7-Aminofluorobenzepan</td>
<td>930</td>
<td>1400</td>
</tr>
<tr>
<td>Lorazepam</td>
<td>600</td>
<td>890</td>
</tr>
<tr>
<td>Lorazepam glucuronide</td>
<td>>20000</td>
<td>>20000</td>
</tr>
</tbody>
</table>

Siemens Syva urine benzodiazepine assay package insert
Confirmation assay uses definitive techniques to improve sensitivity and specificity

• Definitive Techniques:
 • Gas Chromatography (GC) or Liquid Chromatography (LC) as separation technique
 • Tandem Mass Spectrometry (MS/MS) or High Resolution Mass Spectrometry (HRMS) as detection and identification

• Highly Specific and sensitive based on multiple identification criteria
 • Molecular mass over charge (m/z)
 • Retention time (RT)
 • Internal standards
 • Ion ratios
Diversified urine drug testing approaches are designed to meet different clinical needs

• Screen only testing:
 • Drug of abuse screening panel
 • Presumptive positive requires confirmation testing based on different methodology

• Screen with reflex confirmation testing:
 • Drug of abuse screening panel with reflex to confirmation

• Point of Care Drug of Abuse Screen:
 • “Urine cups”
 • Presumptive positive requires confirmation testing based on different methodology

• Direct order of confirmation panels:
 • Quantitative, class based
 • High sensitivity and quantified results reported
Other considerations for test selections

• Results turn-around-time need:
 • Screen results are fast
 • Additional confirmation requires additional testing time (1-4 days)

• Cost of testing:
 • Screen test is low and confirmation can be expensive
 • Presumptive positive results need to be reflex to confirmation testing

• Drugs of interest:
 • Tramadol, methadone and fentanyl are not included in regular opiates immunoassays
 • Certain benzodiazepines and metabolites have poor reactivity to immunoassays
Direct and definitive testing is better suited for pain management and SUD treatment population

• A hybrid approach: LC-MS/MS (definitive techniques) and immunoassays are both adopted

• A hybrid approach can be adopted based on drug classes monitored:

• Qualitative test results reported:
 • “Present”, “Not detected”, or “interference”

• Maximize quality of results and minimize costs of testing
Analytes determined by LC-MS/MS definitive technique

- **Opioids**
 - Heroin metabolite (6-AM)
 - Codeine, Morphine
 - Hydrocodone, Hydromorphone & metabolites
 - Oxycodone, Oxymorphone & metabolites
 - Buprenorphine & metabolite
 - Fentanyl & metabolite
 - Tapentadol & metabolite
 - Meperidine metabolite

- **Zolpidem**

- **Benzodiazepines**
 - Clonazepam & metabolite
 - Alrpaol & metabolite
 - Midazolam & metabolite
 - Lorazepam
 - Diazepam, Nordiazepam, Temazepam, Oxazepam

- **Stimulants**
 - Methamphetamine
 - Amphetamine
 - Methylphenidate
 - MDMA & metabolites
 - Phentermine
Immunoassays are adopted to detect defined drug/metabolites

- Poor physical and chemical fit in the LC-MS/MS assay
 - Marijuana (THC) metabolite
 - Barbiturates
 - Tramadol
 - Ethyl glucuronide

- Good performing immunoassays with high specificity and comparable sensitivity
 - Methadone
 - Cocaine metabolite (Benzoylcegonine): illicit drug
 - Carisoprodol/Meprobamate

- Drugs rarely observed (false positive rate reflects low positivity rate in patient population)
 - Phencyclidine (PCP)
 - Propoxyphene
The “Hybrid” approach benefits from advantages from both testing modalities

- Qualitative and definitive LC-MS/MS approach:
 - Highly sensitive cutoffs for direct detection
 - High specific approach to differentiate drugs in the same class
- Qualitative results are sufficient for most clinical needs
 - Quantitative results can be over-interpreted to make correlations with dose or drug use patterns
 - Exceptions (discuss later)
The “Hybrid” approach benefits from advantages from both testing modalities

• Results reporting turn-around-time (TAT)
 • One LC-MS/MS method + additional immunoassays (random access)
 • Shortened TAT compared to presumptive positive samples needing confirmation

• Costs of testing
 • Quantitative tests are more costly than qualitative tests
 • Multiple quantitative confirmation tests are costly
Analytical differences of qualitative and quantitative methods

• Qualitative Testing Principles
 • One calibrator at the cutoff concentration for each drug/metabolite detected
 • Quality control checked at 50% and 150% cutoff concentrations
 • Results are reported as present or not detected
 • *Certain relative concentrations information can be extracted from qualitative assay (needs toxicologist interpretation)*

• Quantitative Testing Principles
 • Multiple calibrator curve is adopted
 • Defined analytical measuring range
 • Multiple levels of quality control check
 • Results are reported as a quantified number, below or above quantification range
 • Below Lower limit of quantification:
 • <LLOQ

Note: LLOQ is the abbreviation for Lower Limit of Quantification.
Urine drug concentrations can be misleading for clinical interpretation

- **Drug Absorption**
- **Circulating blood (First compartment)**
- **Tissue distribution (second compartment)**
- **Urine Elimination (Urine Detection)**

Drug Metabolism

- Drug dose, administration frequency
- Blood concentration of drug and its metabolites
- ? Urine concentration of drug and its metabolites in random urine samples
Quantitation of certain drug and its metabolites may provide useful information

- Distinguish pharmaceutical impurities from poly drug use
 - Oxycodone present with low hydrocodone

- Document drug elimination and abstinence
 - Concentration can be further normalized by urine creatinine

- Characterize unusual drug metabolism patterns in individual patients

- Identify addition of drug directly to urine to mimic adherence with therapy
 - Large amount of parent drug present without metabolite present
Case 1: missing zolpidem (unexpected negative)

- Drug prescribed: Ambien (zolpidem), 5 mg, PRN at night
- Drug found: none above cutoff (20 ng/mL)
- Question: Is my patient taking Ambien?
Case 1: missing zolpidem

- Drug prescribed: Ambien (zolpidem), 5 mg, PRN at night
- Drug found: none above cutoff (20 ng/mL)
- Question: Is my patient taking Ambien?

Interpretation consideration:

- Zolpidem is usually used only at night
- Half-life in serum/plasma ~2-3 hrs, urine detection window varies
- Frequently missed:
 - most laboratory tests are either not designed to detect zolpidem, or because methods don’t detect metabolites,
 - most urine samples are not first morning collections, missed detection window
Case 2: unexpected hydrocodone (unexpected positive)

- Drug prescribed: oxycodone, 10 mg, QID
- Drug analytes found in the assay:
 - Oxycodone
 - Noroxycodone
 - Oxymorphone
 - Noroxymorphone
 - Hydrocodone
- Questions: is the patient taking non-disclosed hydrocodone containing medication?
Case 2: unexpected hydrocodone

- Drug prescribed: oxycodone, 10 mg, PRN
- Drug analytes found in the assay:
 - Oxycodone, Noroxycodone, Oxymorphone, Noroxymorphone
 - Hydrocodone
- Interpretation Consideration:
 - Oxycodone and its metabolites are present
 - Could hydrocodone presence be due to impurity?
Case 2: unexpected hydrocodone

- Assay cutoff 20 ng/mL
 - Oxycodone: 1546 ng/mL
 - Noroxycodone: 1423 ng/mL
 - Oxymorphone: 456 ng/mL
 - Noroxymorphone: 2140 ng/mL
- Hydrocodone: 23 ng/mL
- Concentration ratio is consistent with hydrocodone being impurities from oxycodone
Case 3: unexpected noroxymorphone (unexpected positive)

- Drug prescribed: Suboxone (buprenorphine 12 mg + naloxone 3 mg)
- Drug analytes found:
 - Buprenorphine
 - Norbuprenorphine
 - Noroxymorphone
- Question: is noroxymorphone detected due to undisclosed medication?
Case 3: unexpected noroxymorphone

Interpretation consideration:

• Noroxymorphone is chemically identical to nornaloxone (naming convention)
• Naloxone can be taken up through Suboxone sublingual film and further metabolized to nornaloxone

Drug analytes found:
- Buprenorphine
- Norbuprenorphine
- Noroxymorphone
Case 4: no metabolite for morphine

- Drug Prescribed: MS Contin (morphine sulfate) extended release
 - 40 mg, BID
- Drug analytes detected:
 - Morphine
- Question: Is the patient compliant with the medication?
 - No supporting metabolite detected
 - Is the sample adulterated?
Case 4: no metabolite for morphine

- Interpretation Consideration:
 - Hydromorphone is only minor metabolite of morphine
 - Majority of morphine is eliminated by glucuronide conjugation
 - Hydrolysis reaction adopted in assay extraction can convert all conjugated morphine to free morphine
- No hydromorphone could not support sample adulteration
Interpretation to resolve unexpected results

• Unexpected positive(s) result
 • Unexpected drug was taken recently
 • Unusual patient pharmacokinetics
 • Drug detected is a metabolite
 • Drug detected is a pharmaceutical impurity

• Drug was added to urine
• Test limitations/errors
• Specimen mixup

• Unexpected negative(s)
 • Expected drug was not taken recently
 • Unusual patient pharmacokinetics
 • Specimen quality prevented detection
 • Drug metabolites not detected

• Test was not designed to detect the drug of interest
• Test limitations/errors
• Specimen mix-up

Summary and discussion

• Toxicology testing is widely adopted in pain management and treatment of SUD
 • Patient population differs from traditional drug of abuse screening
 • Appropriate urine toxicology tests should be used

• Analytical workflows and techniques are diversified to meet different clinical needs

• Urine drug and metabolites concentrations have limited utility to correlate medication dose and frequency