•••••

Introduction to Clinical Cytogenetics: Lecture 1

- Cinthya J Zepeda Mendoza, PhD
- Medical Director, Cytogenetics and Genomic Microarray ARUP Laboratories
- Assistant Professor, Department of Pathology, University of Utah
- Email:

Cinthya.Zepeda@aruplab.com

Cytogenetics Textbooks

- Gardner and Amor. (2018) <u>Gardner and</u> <u>Sutherland's Chromosome</u> <u>Abnormalities and Genetic Counseling</u>. 5th edition
- Gersen and Keagle. (2013) <u>The</u> <u>Principles of Clinical Cytogenetics</u>.
 3rd edition

What is Cytogenetics?

 The study of chromosomes and genomic structure, function, and variation and their role in human disease and heredity

Chromosome analysis/ karyotyping Fluorescence in situ hybridization

Genomic microarray

(segme	nts)						
)							
-	-	-				in the side of	and to be to set
1	· ·		· ·				brown of the
. Mpr	Mythinger	mynym	mmuhan	my	mmountillow	monthing	
					A CONTRACT	ا د.	
-		-			fen frei Bilbitet		
			on the second second				
Ш							8 100
kb	20000kb	25000k	b <u>30000kt</u>) 35000kt	40000kb	45000kb	5000
1	q11.21	q11.23	q12.1 q12.2	q12.3	q13.1 q	13.2 q13.31	q13.33

A brief history of cytogenetics

1882: W Flemming observed chromosomes and their movement during cell division.

1902: T Boveri and Walter Sutton noticed that that chromosomes obey Mendel's Laws during cell division

1912: T Morgan and C Bridges discovered linkage and established the chromosomal theory of inheritance

1921: Human chromosome count set at 48 chromosomes

1956: Human chromosome count set at 46 chromosomes by J Tjio and A Levan

1959: first successful diagnosis of a human chromosome aberration by J Lejeune - trisomy 21 in three cases of Down syndrome

Cytogenetics in the clinic

Constitutional Cancer

Diagnosis of heritable genetic abnormalities in children, adults, pregnancy, and fetal loss

 Detection of acquired or somatic abnormalities for the diagnosis, prognosis, therapy, and/or monitoring of many types of cancer (especially leukemia and lymphoma)

Indications for Constitutional Cytogenomic Analysis

Prenatal

- Abnormal maternal serum screening
- Abnormal cfDNA/NIPT/NIPS
- Abnormal ultrasound
- AMA, ≥ 35 yrs
- Familial chromosome abnormality

Fetal or neonatal demise

Postnatal, childhood

- Perinatal: Birth defects, dysmorphisms, ambiguous genitalia
- Developmental delay/Intellectual disability
- Neurological & behavioral: seizures, autism, etc

Adolescent & adult

- Amenorrhea, ovarian failure
- Infertility or spontaneous abortions
- Birth of a child with a chromosomal abnormality

Amniotic fluid, chorionic villus sampling, fetal tissues

Peripheral blood, buccal swab, skin biopsy

Peripheral blood

Introduction to Cytogenetics I

- DNA and Chromosomal Structure
- Cell Cycle, Mitosis and Meiosis
- Gametogenesis
- Mosaicism vs Chimerism
- Imprinting and Uniparental Disomy
- Karyotyping and Nomenclature

DNA Structure and Organization

Cell Division and The Cell Cycle

- Cell cycle: 4 phases: Mitosis (M), Gap1 (G1), Synthesis (S), Gap2 (G2)
- <u>Mitosis</u>: division of somatic cells

n = # chromosome sets, ploidyc = # chromatids

<u>Mitosis</u>

- a) Interphase
- b) Prophase
- c) Metaphase*
- d) Anaphase
- e) Telophase
- f) Cytokinesis
- g) Interphase

* Stage observed in chromosome analysis

c = # chromatids

Image source: http://www.macroevolution.net/reduction-division.html

<u>Meiosis I</u>

- a) Prophase I: Homologs pair, cross-over
- b) Metaphase I
- c) Anaphase I
- d) Telophase I
- e) Daughter cells

Modified from Gersen and Keagle, Principles of Cytogenetics, 3rd Ed 2013

<u>Meiosis II</u>

- a) Prophase II
- b) Metaphase II
- c) Anaphase II
- d) Telophase II
- e) Daughter cells

Oogenesis vs Spermatogenesis

Down Syndrome and Maternal Age

Errors in Meiosis, Mitosis and Cell Division Lead to Genomic Imbalance

Euploid

Normal chromosome complement

- Haploid: 1n, 23
 chroms = 23
 count
- Diploid: 2n, 23
 pairs of chroms =
 46 count

Aneuploid

Abnormal chromosome complement

- Monosomy: 2n-1, missing chrom = 45 count
- Trisomy: 2n+1,
 additional chrom
 = 47 count

Polyploid

Abnormal number of chromosome sets

- Triploidy: 3n,
 3 sets of chroms =
 69 count
- Tetraploidy: 4n, 4 sets of chroms = 92 count

Mixture of Cell Lines: Mosaicism versus Chimerism

<u>Mosaicism</u>: the presence of at least two genetically distinct, but related cell lines (clones) arising in the same individual

- e.g. constitutional, Turner syndrome: 45,X[15]/46,XX[5]
- e.g. acquired, CML: 46,XX,t(9;22)(q34;q11.2)[9]/46,XX[11]

<u>Chimerism</u>: the presence of at least two genetically distinct cell lines that are derived from different conceptions:

- e.g. twin-twin fusions or transfusions, tissue/organ transplants
- e.g. Bone marrow transplant patient: 46,XX[3]//46,XY[17]

Clinical presentation may be similar, variable, milder, or normal; may see skin pigmentation anomalies; may be identified by a recurrent cytogenetic abnormality in the children of parents who have normal karyotypes (i.e. gonadal mosaicism)

Genomic imprinting

Allele 1

- CpG island <u>methylation</u>
- Histone deacetylation
- Nucleosomal condensation

Allele 2

- Opening of the chromatin by acetylation and <u>demethylation</u>
- Transcription complex can access genes

Genomic imprinting

Uniparental disomy (UPD)

• <u>Biparental inheritance</u>: the normal situation; one chromosome is inherited from each parent

- <u>Uniparental disomy</u>: both chromosome copies come from a single parent
 - Risk for recessive disease for genes in the homozygous chromosome segment
 - Risk for imprinting disorder if involving chromosomes that contain imprinted genes, differentially expressed dependent on parent of origin

Uniparental

Biparental

Imprinted chromosomes and human disease due to uniparental disomy (UPD)

Chromosome UPD and Inheritance	Associated Genetic Disease or Abnormalities			
Paternal UPD 6	Transient neonatal diabetes mellitus			
Maternal UPD 7	Silver-Russell syndrome			
Paternal UPD 11	Beckwith-Wiedemann syndrome			
Maternal UPD 14	Temple syndrome Hypotonia, motor development delay, mild dysmorphic facial features, low birth weight, growth abnormalities			
Paternal UPD 14	Kagami-Ogata syndrome Severe mental and muscoskeletal abnormalities			
Maternal UPD 15	Prader-Willi syndrome			
Paternal UPD 15	Angelman syndrome			
Maternal UPD 20	Intrauterine growth retardation and/or postnatal growth retardation			

Image from: http://carolguze.com/text/442-10nontraditional_inheritance.shtml

Modified from Velissariou, Balkan J Med Gen

Preparation of metaphase chromosomes

Modified from Preparation of a karyotype. Mueller and Young, 2001

Karyotyping

Overview of chromosome analysis

- Generally, 20 cells are analyzed from multiple cultures
- Definition of a clone:
 - <u>At least two</u> metaphase cells with the <u>same extra chromosome</u> or <u>structural abnormality</u>
 - <u>At least three</u> metaphase cells with the <u>same chromosome loss</u>
 - Abnormality observed in two independent cultures (r/o in vitro artifacts)

Chromosome Structure and Classification

Images modified, source: http://learn.genetics.utah.edu/content/chromosomes/readchromosomes/

Chromosome Classification

Designation of Regions, Bands, Sub-bands

Differences in level of resolution by sample type

Description o

- 1) Chromoso
 - Numerica
- 2) Sex chrom
 - Use +/- fc
- 3) Abnormali
 - Ordered I
 then autc
 abnorma
 alphabeti
- 4) Multiple c
 - Mosaicisr lines from
 - Chimerisr

e.g. 48,XYY,+13; 68,XXY,-22; mos 47,XXY[10]/47,XYY[5]/46,XY[5]

Common symbols and abbreviated terms

- + additional normal or abnormal chromosome (trisomy)
- loss of a chromosome (monosomy)
- add added material of unknown origin (typically resulting in a loss of material distal to breakpoint)
- chi chimerism (multiple cell lines deriving from the different individuals)
 dol
- del deletion
- der derivative chromosome, due to structural rearrangement(s)
- dic dicentric chromosome
- dup duplication
- dn de novo (not inherited)
- i isochromosome (composed of two identical chromosome arms)
- idic isodicentric chromosome (isochromosome w/ two centromeres)
- ins insertion
- inv inversion
- mar marker chromosome, unknown origin
- mat maternal origin
- mos mosaicism (multiple cell lines deriving from the same individual)
- pat paternal origin
- r ring chromosome
- rob Robertsonian translocation, a whole arm translocation between acrocentric chromosomes
- t translocation
- / separates clones (for mosaic karyotypes)
- // separates clones (for chimeric karyotypes)
- [] indicate number of cells (for mosaic or chimeric karyotypes)

Nomenclature Practice: Numerical Abnormalities (Constitutional)

12 cells

8 cells

	Capacitanti 2		1000	Canada Canada	4	allerance of	
6	success gandless 7	8	9	10	11	12	
13	14	15		16	17	18	
19	888 20	21	<u>8</u> <u>8</u> 22	2	Logue x	 Y	