#### •••••

# Introduction to Clinical Cytogenetics: Lecture 2

- Cinthya J Zepeda Mendoza, PhD
- Medical Director, Cytogenetics and Genomic Microarray, ARUP Laboratories
- Assistant Professor, Department of Pathology, University of Utah
- Email:

Cinthya.Zepeda@aruplab.com

# Introduction to Cytogenetics II

- Autosomal Structural Abnormalities and Nomenclature
- Translocations and Derivative Chromosomes
- Inversions and Recombinant Chromosomes
- Isochromosomes
- Hyperdiploidy/hypodiploidy
- Oncology nomenclature stemline, sidelines, etc
- Chromosome heteromorphisms
- Sex chromosomes

- Definition: Breakage and rejoining of chromosomes or chromosome segments
- May be either balanced or unbalanced
- Balanced rearrangements:
  - Breakpoints can disrupt gene expression (within a gene or regulatory element)
  - Can create gene fusions or affect gene expression ( $\uparrow \downarrow$ ) by position effects
    - Common in cancer

(Abnormal is on the right)



(Abnormal is on the right)





# Effects of Translocations

- Can create gene fusions
  - BCR-ABL1, ETV6-RUNX1, PML-RARA
- May disrupt gene expression (breakpoint within a gene or regulatory element by position effect)
  - In prenatal setting and de novo, risk for expression of abnormal phenotype is ~6-9% (Warburton AJMG 1991)
- Constitutional carriers are at risk for infertility, recurrent miscarriage and/or birth of a child with a congenital anomaly syndrome
  - Most risk figures fall into the range of 0-30% for a liveborn child with an abnormality (higher end if previous child)

### **Translocation Nomenclature**



## Ph chromosome gain



### Can you tell what is going on in this case?

In 1 cell

In 19 cells



47,XX,t(9;22)(q34;q11.2),+der(22)t(9;22)[1]//46,XY[19]

### Meiosis in the Balanced Translocation Carrier

Only 2:2 alternate segregation will result in normal/balanced gametes

All other modes of segregation result in unbalanced gametes



Chromosome Abnormalities and Genetic Counseling. 4<sup>th</sup> ed. Gardner, Sutherland and Shaffer. 2012

# Predicting clinical outcomes for the balanced translocation carrier

#### Factors that influence segregation and outcomes

- Location of the breakpoints, relative to chromosome size and the centromere
- Relative size of chromosomes involved

![](_page_11_Figure_4.jpeg)

FIGURE 5–5 Prediction of likely viable segregant outcomes by pachytene diagram drawing and assessment of the configuration of the quadrivalent.

See also Table 5-4 in Gardner, Sutherland and Shaffer 2012

Gardner, Sutherland and Shaffer. 2012

![](_page_12_Figure_1.jpeg)

![](_page_13_Figure_0.jpeg)

### Some inversions are easy to detect by karyotype

![](_page_14_Figure_1.jpeg)

45,XX,inv(3)(q21q26.2),-7[5]/46,sl,+1mar[15] RPN1/MECOM

### Some inversions are hard to detect by karyotype

![](_page_15_Figure_1.jpeg)

46,XX,inv(16)(p13.1q22)[16]/46,XX[4] CBFB/MYH11

![](_page_16_Figure_1.jpeg)

### Isochromosomes in hematological neoplasms

![](_page_17_Figure_1.jpeg)

46,XX,i(17)(q10)[13]/46,XX[7]

### Oncology nomenclature: Stemlines, sidelines and more

- Stemline (sl): the most basic clone of a tumor cell population. Listed first.
- Sideline (sdl): additional deviating subclones from the stemline. Listed after stemline. If ≥1 sdl, these can be listed as sdl1, sdl2, sdl3, etc
- Idem (idem): refers to the karyotype listed first. In tumors with subclones, idem can be used followed by the additional changes in relation to the stemline.

#### sl and sdl usage example:

```
46,XX,t(9;22)(q34;q11.2)[3]/47,sl,+8[17]/48,sdl1,+9[3]/49,sdl2,+11[12]
```

```
46,XX,t(9;22)(q34;q11.2)[3]/
47,sl,+8[17]/
```

**Pro-tip!** *idem or sl and × can indicate polyploidy* 26,X,+4,+6,+21[3]/52,idem×2 26,X,+4,+6,+21[3]/52,sl×2

#### idem usage example:

48,sdl1,+9[3]/

49,sdl2,+11[12]

```
46,XX,t(9;22)(q34;q11.2)[3]/47,idem,+8[17]/48,idem,+8,+9[3]/49,idem, +8,+9,+11[12]
```

```
46,XX,t(9;22)(q34;q11.2)[3]/
47,idem,+8[17]/
48,idem,+8,+9[3]/
49,idem, +8,+9,+11[12]
```

### Stemlines, sidelines and more

![](_page_19_Figure_1.jpeg)

45,XX,-7[7]/

### Stemlines, sidelines and more

![](_page_20_Picture_1.jpeg)

### Stemlines, sidelines and more

![](_page_21_Figure_1.jpeg)

46,XX[2]

### **B-ALL** hyperdiploidy

![](_page_22_Figure_1.jpeg)

55-56,XX,+X,+4,+6,+8,+10,+14,+17,+18,+21,+21[cp11]/46,XX[9]

### **B-ALL** hyperdiploidy

![](_page_23_Figure_1.jpeg)

55-56,XX,+X,+4,+6,+8,+10,+14,+17,+18,+21,+21[cp11]/46,XX[9]

### **B-ALL** near-haploidy

![](_page_24_Figure_1.jpeg)

31,XY,add(1)(q21),+4,+8,+9,+14,+18,+21,+mar[cp6]

### **B-ALL** masked near-haploidy

![](_page_25_Figure_1.jpeg)

31,XY,add(1)(q21),+4,+8,+9,+14,+18,+21,+mar[cp6]/62,slx2[cp5]/46,XY[9]

### B-ALL near-haplo/hypodiploidy vs hyperdiploidy

![](_page_26_Figure_1.jpeg)

## Structural Abnormalities Description (Illustrated by Examples)

- Terminal vs interstitial
  - add(11)(q23)
  - del(4)(p16.3)
  - dup(17)(p13p11.2)
- Interchromosomal vs intrachromosomal
  - t(9;22)(q34;q11.2)
  - inv(3)(q21q26.2)
  - ins(2)(p13q21q31)
- Whole chromosome arm rearrangements
  - i(12)(p10)
  - der(1;7)(q10;p10)
  - rob(13;14)(q10;q10)
- Combination of abnormalities
  - 47,XY,+8,t(8;14)(q24;q32)
  - der(7)del(7)(p11.2)del(7)(q22)
  - mos 45,X[12]/46,X,idic(X)(p11.22)[8]

# Normal variable chromosomal features/ Heteromorphisms

(NOTE: generally, these are not included in the karyotype)

Variation in length (+ or -)

- Yqh+ 16qh+
- 1qh+
- 9qh+

13ps+21pstk+

Variation in position

- inv(2)(p11.2q13)
- inv(9)(p12q13)

• Yqs

![](_page_28_Figure_11.jpeg)

# Sex Chromosomes

- X chromosome: 1000's of genes, one
   X is inactive in females
  - XIST: dosage compensation
- Y chromosome: main function is in male sexual development
  - SRY determines male phenotype
  - Other genes regulate sexual development
  - Yqh is inactive
- Pseudoautosomal (PAR) regions are required for pairing and recombination between the X and Y in males
  - Errors in XY pairing lead to increased incidence of XY nondisjunction, higher rates of sex chromosome aneuploidy

![](_page_29_Figure_9.jpeg)

# Common sex chromosome aneuploidies

| Sex<br>Chromosome<br>Aneuploidy | Syndrome    | Incidence in<br>newborns | Characteristics                                                                                                                                             |
|---------------------------------|-------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 45,X and<br>variants            | Turner      | 1 in 3500<br>females*    | Female: growth delay, short stature,<br>neck webbing and edema, CHD<br>(coarctation of aorta), renal anomalies,<br>amenorrhea, ovarian failure, infertility |
| 47,XXX                          | (Triple X)  | 1 in 1000<br>females     | Female: normal appearance, risk for developmental delays and psychiatric impairment, normal fertility                                                       |
| 47,XXY                          | Klinefelter | 1 in 500-1000<br>males   | Male: normal appearance,<br>hypogonadism, speech delay, learning<br>disability, infertility                                                                 |
| 47,XYY                          |             | 1 in 1000<br>males       | Male: normal appearance, tall stature,<br>risk for developmental delay, learning<br>disabilities, normal fertility                                          |

\* 99% of 45,X conceptuses result in spontaneous abortion

# Sex Chromosomes and Meiotic Behavior

- In female meiosis I, X homologs pair like the autosomes
- In male meiosis I, X and Y pair only in the pseudoautosomal regions (PAR), an obligatory recombination event occurs in Xp/Yp (PAR1)
- Heterochromatic DNA (present on Yq) replicates late in the cell cycle (asynchrony)
- The timing of separation of sex chromosome sister chromatids in meiosis II may be uncoupled from the autosomes

![](_page_31_Figure_5.jpeg)

#### Spermatocyte at MI Prophase

![](_page_31_Figure_7.jpeg)

Red = chromosomes (2n,4c) Blue = centromeres Yellow = Synaptonemal complexes

# Translocation (X;Y) PAR1 aberrant crossover leads to 46,XX male and 46,XY female

![](_page_32_Figure_1.jpeg)